解释随机电化学数据

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Sina S. Jamali , Yanfang Wu , Axel M. Homborg , Serge G. Lemay , J. Justin Gooding
{"title":"解释随机电化学数据","authors":"Sina S. Jamali ,&nbsp;Yanfang Wu ,&nbsp;Axel M. Homborg ,&nbsp;Serge G. Lemay ,&nbsp;J. Justin Gooding","doi":"10.1016/j.coelec.2024.101505","DOIUrl":null,"url":null,"abstract":"<div><p>Stochastic electrochemical measurement has come of age as a powerful analytical tool in corrosion science, electrophysiology, and single-entity electrochemistry. It relies on the fundamental trait that most electrochemical processes are stochastic and discrete in nature. Stochastic measurement of a single entity probes the charge transfer from a few or even one electroactive species. In corrosion, the stochastic measurements capture either the average amplitude/frequency of many events taking place spontaneously or probe discrete transients, signifying localized dissolution. The measurement principles vary in corrosion, single-entity, and electrophysiology, yet the main quantifiable values are commonly the frequency and amplitude of events. This perspective delves into the methodologies for the analysis and deconvolution of stochastic signals in electrochemistry. Ranging from visual assessment of transients to time/frequency analyses of the data and state-of-the-art machine learning, these methodologies mainly aim at identifying patterns, singular events, and rates of electrochemical processes from stochastic signals.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"46 ","pages":"Article 101505"},"PeriodicalIF":7.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324000668/pdfft?md5=822cd80d950c944a1cb1a194964a16a3&pid=1-s2.0-S2451910324000668-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Interpretation of stochastic electrochemical data\",\"authors\":\"Sina S. Jamali ,&nbsp;Yanfang Wu ,&nbsp;Axel M. Homborg ,&nbsp;Serge G. Lemay ,&nbsp;J. Justin Gooding\",\"doi\":\"10.1016/j.coelec.2024.101505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stochastic electrochemical measurement has come of age as a powerful analytical tool in corrosion science, electrophysiology, and single-entity electrochemistry. It relies on the fundamental trait that most electrochemical processes are stochastic and discrete in nature. Stochastic measurement of a single entity probes the charge transfer from a few or even one electroactive species. In corrosion, the stochastic measurements capture either the average amplitude/frequency of many events taking place spontaneously or probe discrete transients, signifying localized dissolution. The measurement principles vary in corrosion, single-entity, and electrophysiology, yet the main quantifiable values are commonly the frequency and amplitude of events. This perspective delves into the methodologies for the analysis and deconvolution of stochastic signals in electrochemistry. Ranging from visual assessment of transients to time/frequency analyses of the data and state-of-the-art machine learning, these methodologies mainly aim at identifying patterns, singular events, and rates of electrochemical processes from stochastic signals.</p></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"46 \",\"pages\":\"Article 101505\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000668/pdfft?md5=822cd80d950c944a1cb1a194964a16a3&pid=1-s2.0-S2451910324000668-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000668\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000668","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随机电化学测量作为腐蚀科学、电生理学和单一实体电化学领域的一种强大分析工具,已经进入了一个新的时代。它依赖于大多数电化学过程都具有随机性和离散性这一基本特征。对单一实体的随机测量可探测少数甚至一个电活性物种的电荷转移。在腐蚀过程中,随机测量可以捕捉自发发生的许多事件的平均振幅/频率,也可以探测离散瞬态,表明局部溶解。腐蚀、单一实体和电生理学的测量原理各不相同,但主要的量化值通常是事件的频率和振幅。本视角深入探讨了电化学中随机信号的分析和解卷积方法。从瞬态的视觉评估到数据的时间/频率分析以及最先进的机器学习,这些方法的主要目的是从随机信号中识别电化学过程的模式、奇异事件和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interpretation of stochastic electrochemical data

Interpretation of stochastic electrochemical data

Stochastic electrochemical measurement has come of age as a powerful analytical tool in corrosion science, electrophysiology, and single-entity electrochemistry. It relies on the fundamental trait that most electrochemical processes are stochastic and discrete in nature. Stochastic measurement of a single entity probes the charge transfer from a few or even one electroactive species. In corrosion, the stochastic measurements capture either the average amplitude/frequency of many events taking place spontaneously or probe discrete transients, signifying localized dissolution. The measurement principles vary in corrosion, single-entity, and electrophysiology, yet the main quantifiable values are commonly the frequency and amplitude of events. This perspective delves into the methodologies for the analysis and deconvolution of stochastic signals in electrochemistry. Ranging from visual assessment of transients to time/frequency analyses of the data and state-of-the-art machine learning, these methodologies mainly aim at identifying patterns, singular events, and rates of electrochemical processes from stochastic signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信