Aristotelis Xenakis, Eleni Galani, Vassiliki Papadimitriou, Maria D. Chatzidaki
{"title":"用于防晒配方的软纳米结构","authors":"Aristotelis Xenakis, Eleni Galani, Vassiliki Papadimitriou, Maria D. Chatzidaki","doi":"10.1016/j.cocis.2024.101803","DOIUrl":null,"url":null,"abstract":"<div><p>Sun protection formulations have undergone significant advancements, incorporating soft nanostructures to enhance their efficacy, safety, and aesthetic appeal. Nanoemulsions, with their controlled droplet size and improved ultraviolet (UV) absorption, are utilized in sunscreen formulations, boosting their photoprotective effects. Microemulsions, offering enhanced dispersion and delivery, enable the incorporation of new active ingredients, improving stability and skin permeation. Pickering emulsions, stabilized by particles provide stable, eco-friendly alternatives. Nanostructured lipid carriers, facilitate efficient encapsulation and delivery of various compounds, enhancing both UV protection and skin penetration. Nanoparticles (NPs), demonstrate promising results in improving photostability, preventing skin penetration, and enhancing antioxidant properties of sunscreens. SunSpheresTM, advanced UV boosters, scatter UV radiation effectively when integrated into sunscreen formulations, significantly increasing their sun protection factor values. This review highlights the diverse applications of soft nanostructures in sun protection, emphasizing their crucial role in the evolution of sunscreens for optimal skin safety and protection against UV radiation.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"71 ","pages":"Article 101803"},"PeriodicalIF":7.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft nanostructures for sun protection formulations\",\"authors\":\"Aristotelis Xenakis, Eleni Galani, Vassiliki Papadimitriou, Maria D. Chatzidaki\",\"doi\":\"10.1016/j.cocis.2024.101803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sun protection formulations have undergone significant advancements, incorporating soft nanostructures to enhance their efficacy, safety, and aesthetic appeal. Nanoemulsions, with their controlled droplet size and improved ultraviolet (UV) absorption, are utilized in sunscreen formulations, boosting their photoprotective effects. Microemulsions, offering enhanced dispersion and delivery, enable the incorporation of new active ingredients, improving stability and skin permeation. Pickering emulsions, stabilized by particles provide stable, eco-friendly alternatives. Nanostructured lipid carriers, facilitate efficient encapsulation and delivery of various compounds, enhancing both UV protection and skin penetration. Nanoparticles (NPs), demonstrate promising results in improving photostability, preventing skin penetration, and enhancing antioxidant properties of sunscreens. SunSpheresTM, advanced UV boosters, scatter UV radiation effectively when integrated into sunscreen formulations, significantly increasing their sun protection factor values. This review highlights the diverse applications of soft nanostructures in sun protection, emphasizing their crucial role in the evolution of sunscreens for optimal skin safety and protection against UV radiation.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"71 \",\"pages\":\"Article 101803\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000219\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000219","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Soft nanostructures for sun protection formulations
Sun protection formulations have undergone significant advancements, incorporating soft nanostructures to enhance their efficacy, safety, and aesthetic appeal. Nanoemulsions, with their controlled droplet size and improved ultraviolet (UV) absorption, are utilized in sunscreen formulations, boosting their photoprotective effects. Microemulsions, offering enhanced dispersion and delivery, enable the incorporation of new active ingredients, improving stability and skin permeation. Pickering emulsions, stabilized by particles provide stable, eco-friendly alternatives. Nanostructured lipid carriers, facilitate efficient encapsulation and delivery of various compounds, enhancing both UV protection and skin penetration. Nanoparticles (NPs), demonstrate promising results in improving photostability, preventing skin penetration, and enhancing antioxidant properties of sunscreens. SunSpheresTM, advanced UV boosters, scatter UV radiation effectively when integrated into sunscreen formulations, significantly increasing their sun protection factor values. This review highlights the diverse applications of soft nanostructures in sun protection, emphasizing their crucial role in the evolution of sunscreens for optimal skin safety and protection against UV radiation.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.