密度可变的不可压缩相场模型的强解

Pub Date : 2024-04-19 DOI:10.1007/s10255-024-1075-x
Ying-hua Li, Yong Wang, Han-bin Cai
{"title":"密度可变的不可压缩相场模型的强解","authors":"Ying-hua Li, Yong Wang, Han-bin Cai","doi":"10.1007/s10255-024-1075-x","DOIUrl":null,"url":null,"abstract":"<p>We study the initial-boundary value problem of an incompressible Navier-Stokes-Cahn-Hilliard system with variable density. We prove the existence and uniqueness of the local strong solution in two or three dimensions. Moreover, we establish a two-dimensional blow-up criterion in terms of the temporal integral of the square of maximum norm of velocity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Solutions of an Incompressible Phase-field Model with Variable Density\",\"authors\":\"Ying-hua Li, Yong Wang, Han-bin Cai\",\"doi\":\"10.1007/s10255-024-1075-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the initial-boundary value problem of an incompressible Navier-Stokes-Cahn-Hilliard system with variable density. We prove the existence and uniqueness of the local strong solution in two or three dimensions. Moreover, we establish a two-dimensional blow-up criterion in terms of the temporal integral of the square of maximum norm of velocity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1075-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1075-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有可变密度的不可压缩纳维-斯托克斯-卡恩-希利亚德系统的初始边界值问题。我们证明了二维或三维局部强解的存在性和唯一性。此外,我们用速度最大规范平方的时间积分建立了一个二维炸毁准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong Solutions of an Incompressible Phase-field Model with Variable Density

We study the initial-boundary value problem of an incompressible Navier-Stokes-Cahn-Hilliard system with variable density. We prove the existence and uniqueness of the local strong solution in two or three dimensions. Moreover, we establish a two-dimensional blow-up criterion in terms of the temporal integral of the square of maximum norm of velocity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信