{"title":"密度可变的不可压缩相场模型的强解","authors":"Ying-hua Li, Yong Wang, Han-bin Cai","doi":"10.1007/s10255-024-1075-x","DOIUrl":null,"url":null,"abstract":"<p>We study the initial-boundary value problem of an incompressible Navier-Stokes-Cahn-Hilliard system with variable density. We prove the existence and uniqueness of the local strong solution in two or three dimensions. Moreover, we establish a two-dimensional blow-up criterion in terms of the temporal integral of the square of maximum norm of velocity.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"101 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Solutions of an Incompressible Phase-field Model with Variable Density\",\"authors\":\"Ying-hua Li, Yong Wang, Han-bin Cai\",\"doi\":\"10.1007/s10255-024-1075-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the initial-boundary value problem of an incompressible Navier-Stokes-Cahn-Hilliard system with variable density. We prove the existence and uniqueness of the local strong solution in two or three dimensions. Moreover, we establish a two-dimensional blow-up criterion in terms of the temporal integral of the square of maximum norm of velocity.</p>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1075-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1075-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Strong Solutions of an Incompressible Phase-field Model with Variable Density
We study the initial-boundary value problem of an incompressible Navier-Stokes-Cahn-Hilliard system with variable density. We prove the existence and uniqueness of the local strong solution in two or three dimensions. Moreover, we establish a two-dimensional blow-up criterion in terms of the temporal integral of the square of maximum norm of velocity.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.