论某类非等价函数

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
S. Sivaprasad Kumar, Pooja Yadav
{"title":"论某类非等价函数","authors":"S. Sivaprasad Kumar,&nbsp;Pooja Yadav","doi":"10.1007/s40995-024-01614-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a family of analytic functions given by <span>\\(\\psi _{A,B}(z):= \\dfrac{1}{A-B}\\log {\\dfrac{1+Az}{1+Bz}},\\)</span> which maps univalently the unit disk onto either elliptical or strip domains, where either <span>\\(A=-B=\\alpha\\)</span> or <span>\\(A=\\alpha e^{i\\gamma }\\)</span> and <span>\\(B=\\alpha e^{-i\\gamma }\\)</span> (<span>\\(\\alpha \\in (0,1]\\)</span> and <span>\\(\\gamma \\in (0,\\pi /2]\\)</span>). We study a class of non-univalent analytic functions defined by <span>\\({{\\mathcal {F}}}[A,B]:=\\left\\{ f\\in {{\\mathcal {A}}}:\\left( \\dfrac{zf'(z)}{f(z)}-1\\right) \\prec \\psi _{A,B}(z)\\right\\}\\)</span>. Further, we investigate various characteristic properties of <span>\\(\\psi _{A,B}(z)\\)</span> as well as functions in the class <span>\\({{\\mathcal {F}}}[A,B]\\)</span> and obtain the sharp radius of starlikeness of order <span>\\(\\delta\\)</span> and univalence for the functions in <span>\\({{\\mathcal {F}}}[A,B]\\)</span>. Also, we find the sharp radii for functions in <span>\\({{{\\mathcal {B}}}}{{{\\mathcal {S}}}}(\\alpha ):=\\{f\\in {{\\mathcal {A}}}:zf'(z)/f(z)-1\\prec z/(1-\\alpha z^2),\\;\\alpha \\in (0,1)\\}\\)</span>, <span>\\({{\\mathcal {S}}}_{cs}(\\alpha ):=\\{f\\in {{\\mathcal {A}}}:zf'(z)/f(z)-1\\prec z/((1-z)(1+\\alpha z)),\\;\\alpha \\in (0,1)\\}\\)</span>, and others to be in the class <span>\\({{\\mathcal {F}}}[A,B].\\)</span></p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 3","pages":"785 - 793"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Class of Certain Non-univalent Functions\",\"authors\":\"S. Sivaprasad Kumar,&nbsp;Pooja Yadav\",\"doi\":\"10.1007/s40995-024-01614-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a family of analytic functions given by <span>\\\\(\\\\psi _{A,B}(z):= \\\\dfrac{1}{A-B}\\\\log {\\\\dfrac{1+Az}{1+Bz}},\\\\)</span> which maps univalently the unit disk onto either elliptical or strip domains, where either <span>\\\\(A=-B=\\\\alpha\\\\)</span> or <span>\\\\(A=\\\\alpha e^{i\\\\gamma }\\\\)</span> and <span>\\\\(B=\\\\alpha e^{-i\\\\gamma }\\\\)</span> (<span>\\\\(\\\\alpha \\\\in (0,1]\\\\)</span> and <span>\\\\(\\\\gamma \\\\in (0,\\\\pi /2]\\\\)</span>). We study a class of non-univalent analytic functions defined by <span>\\\\({{\\\\mathcal {F}}}[A,B]:=\\\\left\\\\{ f\\\\in {{\\\\mathcal {A}}}:\\\\left( \\\\dfrac{zf'(z)}{f(z)}-1\\\\right) \\\\prec \\\\psi _{A,B}(z)\\\\right\\\\}\\\\)</span>. Further, we investigate various characteristic properties of <span>\\\\(\\\\psi _{A,B}(z)\\\\)</span> as well as functions in the class <span>\\\\({{\\\\mathcal {F}}}[A,B]\\\\)</span> and obtain the sharp radius of starlikeness of order <span>\\\\(\\\\delta\\\\)</span> and univalence for the functions in <span>\\\\({{\\\\mathcal {F}}}[A,B]\\\\)</span>. Also, we find the sharp radii for functions in <span>\\\\({{{\\\\mathcal {B}}}}{{{\\\\mathcal {S}}}}(\\\\alpha ):=\\\\{f\\\\in {{\\\\mathcal {A}}}:zf'(z)/f(z)-1\\\\prec z/(1-\\\\alpha z^2),\\\\;\\\\alpha \\\\in (0,1)\\\\}\\\\)</span>, <span>\\\\({{\\\\mathcal {S}}}_{cs}(\\\\alpha ):=\\\\{f\\\\in {{\\\\mathcal {A}}}:zf'(z)/f(z)-1\\\\prec z/((1-z)(1+\\\\alpha z)),\\\\;\\\\alpha \\\\in (0,1)\\\\}\\\\)</span>, and others to be in the class <span>\\\\({{\\\\mathcal {F}}}[A,B].\\\\)</span></p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"48 3\",\"pages\":\"785 - 793\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01614-y\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01614-y","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了由 \(\psi _{A,B}(z):= \dfrac{1}{A-B}\log {\dfrac{1+Az}{1+Bz}}, \),它可以将单位圆盘等价地映射到椭圆域或带状域上、其中,要么是 \(A=-B=\alpha\) 要么是 \(A=\alpha e^{i\gamma }\) and \(B=\alpha e^{-i\gamma }\) (\(\alpha \in (0,1]\) and\(\gamma \in (0,\pi /2]\)).我们研究了一类由 \({{\mathcal {F}}[A,B]:=\left\{ fin {{\mathcal {A}}}:\left( \dfrac{zf'(z)}{f(z)}-1\right) \prec \psi _{A,B}(z)\right\}) 定义的非等价解析函数。)进一步,我们研究了 \(\psi _{A,B}(z)\) 以及 \({{\mathcal {F}}}[A,B]\) 类中函数的各种特征性质,并得到了 \(\delta\) 阶星形性的尖锐半径以及 \({{\mathcal {F}}}[A,B]\) 中函数的单值性。同时,我们还发现了函数在{{\mathcal {B}}}}{{\mathcal {S}}}}(\alpha ):=\{f\in {{mathcal {A}}:zf'(z)/f(z)-1\prec z/(1-\alpha z^2),\;\alpha \in (0,1)\}\),\({{mathcal {S}}}_{cs}(\alpha ):=\{f\in {{mathcal {A}}}:zf'(z)/f(z)-1/prec z/((1-z)(1+\alpha z)),\;\alpha\in (0,1)\}), and others to be in the class\({{mathcal {F}}}[A,B].\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a Class of Certain Non-univalent Functions

On a Class of Certain Non-univalent Functions

In this paper, we introduce a family of analytic functions given by \(\psi _{A,B}(z):= \dfrac{1}{A-B}\log {\dfrac{1+Az}{1+Bz}},\) which maps univalently the unit disk onto either elliptical or strip domains, where either \(A=-B=\alpha\) or \(A=\alpha e^{i\gamma }\) and \(B=\alpha e^{-i\gamma }\) (\(\alpha \in (0,1]\) and \(\gamma \in (0,\pi /2]\)). We study a class of non-univalent analytic functions defined by \({{\mathcal {F}}}[A,B]:=\left\{ f\in {{\mathcal {A}}}:\left( \dfrac{zf'(z)}{f(z)}-1\right) \prec \psi _{A,B}(z)\right\}\). Further, we investigate various characteristic properties of \(\psi _{A,B}(z)\) as well as functions in the class \({{\mathcal {F}}}[A,B]\) and obtain the sharp radius of starlikeness of order \(\delta\) and univalence for the functions in \({{\mathcal {F}}}[A,B]\). Also, we find the sharp radii for functions in \({{{\mathcal {B}}}}{{{\mathcal {S}}}}(\alpha ):=\{f\in {{\mathcal {A}}}:zf'(z)/f(z)-1\prec z/(1-\alpha z^2),\;\alpha \in (0,1)\}\), \({{\mathcal {S}}}_{cs}(\alpha ):=\{f\in {{\mathcal {A}}}:zf'(z)/f(z)-1\prec z/((1-z)(1+\alpha z)),\;\alpha \in (0,1)\}\), and others to be in the class \({{\mathcal {F}}}[A,B].\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信