CMOS BD-BCI:带有两步时域量化器和双模电荷平衡多极刺激器的神经记录器

Ahmad Reza Danesh;Haoran Pu;Mahyar Safiallah;An H. Do;Zoran Nenadic;Payam Heydari
{"title":"CMOS BD-BCI:带有两步时域量化器和双模电荷平衡多极刺激器的神经记录器","authors":"Ahmad Reza Danesh;Haoran Pu;Mahyar Safiallah;An H. Do;Zoran Nenadic;Payam Heydari","doi":"10.1109/TBCAS.2024.3391190","DOIUrl":null,"url":null,"abstract":"This work presents a bi-directional brain-computer interface (BD-BCI) including a high-dynamic-range (HDR) two-step time-domain neural acquisition (TTNA) system and a high-voltage (HV) multipolar neural stimulation system incorporating dual-mode time-based charge balancing (DTCB) technique. The proposed TTNA includes four independent recording modules that can sense microvolt neural signals while tolerating large stimulation artifacts. In addition, it exhibits an integrated input-referred noise of 2.3 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nV\n<sub>rms</sub>\n from 0.1- to 250-Hz and can handle a linear input-signal swing of up to 340 mV\n<sub>PP</sub>\n. The multipolar stimulator is composed of four standalone stimulators each with a maximum current of up to 14 mA (\n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n20-V of voltage compliance) and 8-bit resolution. An inter-channel interference cancellation circuitry is introduced to preserve the accuracy and effectiveness of the DTCB method in the multipolar-stimulation configuration. Fabricated in an HV 180-nm CMOS technology, the BD-BCI chipset undergoes extensive \n<italic>in-vitro</i>\n and \n<italic>in-vivo</i>\n evaluations. The recording system achieves a measured SNDR, SFDR, and CMRR of 84.8 dB, 89.6 dB, and \n<inline-formula><tex-math>$&gt;$</tex-math></inline-formula>\n105 dB, respectively. The measurement results verify that the stimulation system is capable of performing high-precision charge balancing with \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n2 mV and \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n7.5 mV accuracy in the interpulse-bounded time-based charge balancing (TCB) and artifactless TCB modes, respectively.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1354-1370"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505036","citationCount":"0","resultStr":"{\"title\":\"A CMOS BD-BCI: Neural Recorder With Two-Step Time-Domain Quantizer and Multipolar Stimulator With Dual-Mode Charge Balancing\",\"authors\":\"Ahmad Reza Danesh;Haoran Pu;Mahyar Safiallah;An H. Do;Zoran Nenadic;Payam Heydari\",\"doi\":\"10.1109/TBCAS.2024.3391190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a bi-directional brain-computer interface (BD-BCI) including a high-dynamic-range (HDR) two-step time-domain neural acquisition (TTNA) system and a high-voltage (HV) multipolar neural stimulation system incorporating dual-mode time-based charge balancing (DTCB) technique. The proposed TTNA includes four independent recording modules that can sense microvolt neural signals while tolerating large stimulation artifacts. In addition, it exhibits an integrated input-referred noise of 2.3 \\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nV\\n<sub>rms</sub>\\n from 0.1- to 250-Hz and can handle a linear input-signal swing of up to 340 mV\\n<sub>PP</sub>\\n. The multipolar stimulator is composed of four standalone stimulators each with a maximum current of up to 14 mA (\\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n20-V of voltage compliance) and 8-bit resolution. An inter-channel interference cancellation circuitry is introduced to preserve the accuracy and effectiveness of the DTCB method in the multipolar-stimulation configuration. Fabricated in an HV 180-nm CMOS technology, the BD-BCI chipset undergoes extensive \\n<italic>in-vitro</i>\\n and \\n<italic>in-vivo</i>\\n evaluations. The recording system achieves a measured SNDR, SFDR, and CMRR of 84.8 dB, 89.6 dB, and \\n<inline-formula><tex-math>$&gt;$</tex-math></inline-formula>\\n105 dB, respectively. The measurement results verify that the stimulation system is capable of performing high-precision charge balancing with \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n2 mV and \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n7.5 mV accuracy in the interpulse-bounded time-based charge balancing (TCB) and artifactless TCB modes, respectively.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 6\",\"pages\":\"1354-1370\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505036/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505036/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个双向脑机接口(BD-BCI),包括一个高动态范围(HDR)两步时域神经采集(TTNA)系统和一个结合双模时基电荷平衡(DTCB)技术的高压(HV)多极神经刺激系统。所提出的TTNA包括四个独立的记录模块,可以感知微伏神经信号,同时耐受大的刺激伪像。此外,它在0.1- 250 hz范围内的综合输入参考噪声为2.3 $\mu$Vrms,可以处理高达340 mVPP的线性输入信号摆幅。多极刺激器由四个独立的刺激器组成,每个刺激器的最大电流高达14 mA ($\pm$20 v的电压遵从性)和8位分辨率。为了在多极刺激条件下保持dcb方法的准确性和有效性,引入了信道间干扰抵消电路。BD-BCI芯片组采用HV 180纳米CMOS技术制造,经过了广泛的体外和体内评估。该记录系统的实测SNDR、SFDR和CMRR分别为84.8 dB、89.6 dB和105 dB。测量结果验证了该激励系统能够在脉冲间有界时间电荷平衡(TCB)和无人工TCB模式下分别以$\pm$2 mV和$\pm$7.5 mV的精度进行高精度电荷平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CMOS BD-BCI: Neural Recorder With Two-Step Time-Domain Quantizer and Multipolar Stimulator With Dual-Mode Charge Balancing
This work presents a bi-directional brain-computer interface (BD-BCI) including a high-dynamic-range (HDR) two-step time-domain neural acquisition (TTNA) system and a high-voltage (HV) multipolar neural stimulation system incorporating dual-mode time-based charge balancing (DTCB) technique. The proposed TTNA includes four independent recording modules that can sense microvolt neural signals while tolerating large stimulation artifacts. In addition, it exhibits an integrated input-referred noise of 2.3 $\mu$ V rms from 0.1- to 250-Hz and can handle a linear input-signal swing of up to 340 mV PP . The multipolar stimulator is composed of four standalone stimulators each with a maximum current of up to 14 mA ( $\pm$ 20-V of voltage compliance) and 8-bit resolution. An inter-channel interference cancellation circuitry is introduced to preserve the accuracy and effectiveness of the DTCB method in the multipolar-stimulation configuration. Fabricated in an HV 180-nm CMOS technology, the BD-BCI chipset undergoes extensive in-vitro and in-vivo evaluations. The recording system achieves a measured SNDR, SFDR, and CMRR of 84.8 dB, 89.6 dB, and $>$ 105 dB, respectively. The measurement results verify that the stimulation system is capable of performing high-precision charge balancing with $\pm$ 2 mV and $\pm$ 7.5 mV accuracy in the interpulse-bounded time-based charge balancing (TCB) and artifactless TCB modes, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信