利用贝叶斯综合数据分析法,通过在 WEST 进行的软 X 射线测量估算钨的径向浓度曲线

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Hao Wu, Axel Jardin, Didier Mazon, Geert Verdoolaege, The WEST Team
{"title":"利用贝叶斯综合数据分析法,通过在 WEST 进行的软 X 射线测量估算钨的径向浓度曲线","authors":"Hao Wu,&nbsp;Axel Jardin,&nbsp;Didier Mazon,&nbsp;Geert Verdoolaege,&nbsp;The WEST Team","doi":"10.1007/s10894-024-00402-1","DOIUrl":null,"url":null,"abstract":"<div><p>The accumulation of heavy impurities like tungsten in the plasma core of fusion devices can cause significant radiative power losses or even lead to a disruption. It is therefore crucial to monitor the tungsten impurity concentration. In this paper, we follow the integrated data analysis approach using Bayesian probability theory to jointly estimate tungsten concentration profiles and kinetic profiles from soft X-ray, interferometry and electron cyclotron emission measurements. As the full Bayesian inference using Markov chain Monte Carlo sampling is time-consuming, we also discuss emulation of the inference process using neural networks, with a view to real-time implementation.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00402-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimation of the Radial Tungsten Concentration Profiles from Soft X-ray Measurements at WEST with Bayesian Integrated Data Analysis\",\"authors\":\"Hao Wu,&nbsp;Axel Jardin,&nbsp;Didier Mazon,&nbsp;Geert Verdoolaege,&nbsp;The WEST Team\",\"doi\":\"10.1007/s10894-024-00402-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accumulation of heavy impurities like tungsten in the plasma core of fusion devices can cause significant radiative power losses or even lead to a disruption. It is therefore crucial to monitor the tungsten impurity concentration. In this paper, we follow the integrated data analysis approach using Bayesian probability theory to jointly estimate tungsten concentration profiles and kinetic profiles from soft X-ray, interferometry and electron cyclotron emission measurements. As the full Bayesian inference using Markov chain Monte Carlo sampling is time-consuming, we also discuss emulation of the inference process using neural networks, with a view to real-time implementation.</p></div>\",\"PeriodicalId\":634,\"journal\":{\"name\":\"Journal of Fusion Energy\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10894-024-00402-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fusion Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10894-024-00402-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-024-00402-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核聚变装置等离子体核心中钨等重杂质的积累会造成严重的辐射功率损失,甚至导致中断。因此,监测钨杂质浓度至关重要。在本文中,我们采用贝叶斯概率论的综合数据分析方法,从软 X 射线、干涉测量和电子回旋发射测量中联合估算钨浓度曲线和动力学曲线。由于使用马尔科夫链蒙特卡洛采样进行完整的贝叶斯推理非常耗时,因此我们还讨论了使用神经网络模拟推理过程,以便实时实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimation of the Radial Tungsten Concentration Profiles from Soft X-ray Measurements at WEST with Bayesian Integrated Data Analysis

Estimation of the Radial Tungsten Concentration Profiles from Soft X-ray Measurements at WEST with Bayesian Integrated Data Analysis

The accumulation of heavy impurities like tungsten in the plasma core of fusion devices can cause significant radiative power losses or even lead to a disruption. It is therefore crucial to monitor the tungsten impurity concentration. In this paper, we follow the integrated data analysis approach using Bayesian probability theory to jointly estimate tungsten concentration profiles and kinetic profiles from soft X-ray, interferometry and electron cyclotron emission measurements. As the full Bayesian inference using Markov chain Monte Carlo sampling is time-consuming, we also discuss emulation of the inference process using neural networks, with a view to real-time implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信