随时间变化的哈密尔顿的近似准周期解法

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Donato Scarcella
{"title":"随时间变化的哈密尔顿的近似准周期解法","authors":"Donato Scarcella","doi":"10.1134/S1560354724510026","DOIUrl":null,"url":null,"abstract":"<div><p>We consider time-dependent perturbations of integrable and near-integrable Hamiltonians. Assuming the perturbation decays polynomially fast as time tends to infinity, we prove the existence of biasymptotically quasi-periodic solutions. That is, orbits converging to some quasi-periodic solutions in the future (as <span>\\(t\\to+\\infty\\)</span>) and the past (as <span>\\(t\\to-\\infty\\)</span>).</p><p>Concerning the proof, thanks to the implicit function theorem, we prove the existence of a family of orbits converging to some quasi-periodic solutions in the future and another family of motions converging to some quasi-periodic solutions in the past. Then, we look at the intersection between these two families\nwhen <span>\\(t=0\\)</span>. Under suitable hypotheses on the Hamiltonian’s regularity and the perturbation’s smallness, it is a large set, and each point gives rise to biasymptotically quasi-periodic solutions.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 and Dmitry Treschev)","pages":"620 - 653"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians\",\"authors\":\"Donato Scarcella\",\"doi\":\"10.1134/S1560354724510026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider time-dependent perturbations of integrable and near-integrable Hamiltonians. Assuming the perturbation decays polynomially fast as time tends to infinity, we prove the existence of biasymptotically quasi-periodic solutions. That is, orbits converging to some quasi-periodic solutions in the future (as <span>\\\\(t\\\\to+\\\\infty\\\\)</span>) and the past (as <span>\\\\(t\\\\to-\\\\infty\\\\)</span>).</p><p>Concerning the proof, thanks to the implicit function theorem, we prove the existence of a family of orbits converging to some quasi-periodic solutions in the future and another family of motions converging to some quasi-periodic solutions in the past. Then, we look at the intersection between these two families\\nwhen <span>\\\\(t=0\\\\)</span>. Under suitable hypotheses on the Hamiltonian’s regularity and the perturbation’s smallness, it is a large set, and each point gives rise to biasymptotically quasi-periodic solutions.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 and Dmitry Treschev)\",\"pages\":\"620 - 653\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724510026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724510026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了可积分和近可积分哈密顿的随时间变化的扰动。假定扰动随着时间趋于无穷大而多项式地快速衰减,我们证明了偏渐近准周期解的存在。关于证明,得益于隐函数定理,我们证明了在未来收敛于某些准周期解的轨道族和在过去收敛于某些准周期解的运动族的存在。然后,我们研究当 \(t=0\)时这两个族的交集。在哈密顿正则性和微扰的适当假设下,这是一个大集合,每个点都会产生近似准周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians

We consider time-dependent perturbations of integrable and near-integrable Hamiltonians. Assuming the perturbation decays polynomially fast as time tends to infinity, we prove the existence of biasymptotically quasi-periodic solutions. That is, orbits converging to some quasi-periodic solutions in the future (as \(t\to+\infty\)) and the past (as \(t\to-\infty\)).

Concerning the proof, thanks to the implicit function theorem, we prove the existence of a family of orbits converging to some quasi-periodic solutions in the future and another family of motions converging to some quasi-periodic solutions in the past. Then, we look at the intersection between these two families when \(t=0\). Under suitable hypotheses on the Hamiltonian’s regularity and the perturbation’s smallness, it is a large set, and each point gives rise to biasymptotically quasi-periodic solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信