通过减少个人成长来实现等级竞争

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Carles Barril, Àngel Calsina, Odo Diekmann, József Z. Farkas
{"title":"通过减少个人成长来实现等级竞争","authors":"Carles Barril, Àngel Calsina, Odo Diekmann, József Z. Farkas","doi":"10.1007/s00285-024-02084-x","DOIUrl":null,"url":null,"abstract":"<p>We consider a population organised hierarchically with respect to size in such a way that the growth rate of each individual depends only on the presence of larger individuals. As a concrete example one might think of a forest, in which the incidence of light on a tree (and hence how fast it grows) is affected by shading by taller trees. The classic formulation of a model for such a size-structured population employs a first order quasi-linear partial differential equation equipped with a non-local boundary condition. However, the model can also be formulated as a delay equation, more specifically a scalar renewal equation, for the population birth rate. After discussing the well-posedness of the delay formulation, we analyse how many stationary birth rates the equation can have in terms of the functional parameters of the model. In particular we show that, under reasonable and rather general assumptions, only one stationary birth rate can exist besides the trivial one (associated to the state in which there are no individuals and the population birth rate is zero). We give conditions for this non-trivial stationary birth rate to exist and analyse its stability using the principle of linearised stability for delay equations. Finally, we relate the results to the alternative, partial differential equation formulation of the model.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On hierarchical competition through reduction of individual growth\",\"authors\":\"Carles Barril, Àngel Calsina, Odo Diekmann, József Z. Farkas\",\"doi\":\"10.1007/s00285-024-02084-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a population organised hierarchically with respect to size in such a way that the growth rate of each individual depends only on the presence of larger individuals. As a concrete example one might think of a forest, in which the incidence of light on a tree (and hence how fast it grows) is affected by shading by taller trees. The classic formulation of a model for such a size-structured population employs a first order quasi-linear partial differential equation equipped with a non-local boundary condition. However, the model can also be formulated as a delay equation, more specifically a scalar renewal equation, for the population birth rate. After discussing the well-posedness of the delay formulation, we analyse how many stationary birth rates the equation can have in terms of the functional parameters of the model. In particular we show that, under reasonable and rather general assumptions, only one stationary birth rate can exist besides the trivial one (associated to the state in which there are no individuals and the population birth rate is zero). We give conditions for this non-trivial stationary birth rate to exist and analyse its stability using the principle of linearised stability for delay equations. Finally, we relate the results to the alternative, partial differential equation formulation of the model.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02084-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02084-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个按大小分级的种群,即每个个体的生长速度只取决于较大个体的存在。举个具体的例子,我们可以想象一下森林,在森林中,一棵树的光照入射率(以及它的生长速度)会受到高大树木遮挡的影响。这种大小结构的种群模型的经典公式是一个一阶准线性偏微分方程,并配有一个非局部边界条件。不过,该模型也可以表述为人口出生率的延迟方程,更确切地说,是标量更新方程。在讨论了延迟方程的好求解性之后,我们分析了根据模型的函数参数,该方程可以有多少个静态出生率。我们特别指出,在合理且相当一般的假设条件下,除了微不足道的出生率(与没有个体且人口出生率为零的状态相关)之外,只能存在一种静态出生率。我们给出了这种非三稳态出生率存在的条件,并利用延迟方程的线性化稳定性原理分析了它的稳定性。最后,我们将结果与该模型的另一种偏微分方程公式联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On hierarchical competition through reduction of individual growth

We consider a population organised hierarchically with respect to size in such a way that the growth rate of each individual depends only on the presence of larger individuals. As a concrete example one might think of a forest, in which the incidence of light on a tree (and hence how fast it grows) is affected by shading by taller trees. The classic formulation of a model for such a size-structured population employs a first order quasi-linear partial differential equation equipped with a non-local boundary condition. However, the model can also be formulated as a delay equation, more specifically a scalar renewal equation, for the population birth rate. After discussing the well-posedness of the delay formulation, we analyse how many stationary birth rates the equation can have in terms of the functional parameters of the model. In particular we show that, under reasonable and rather general assumptions, only one stationary birth rate can exist besides the trivial one (associated to the state in which there are no individuals and the population birth rate is zero). We give conditions for this non-trivial stationary birth rate to exist and analyse its stability using the principle of linearised stability for delay equations. Finally, we relate the results to the alternative, partial differential equation formulation of the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信