Christian E. Alvarez-Pugliese, Dayana Donneys-Victoria, Wilfredo J. Cardona-Velez, Gerardine G. Botte
{"title":"有机废物电化学价值化展望","authors":"Christian E. Alvarez-Pugliese, Dayana Donneys-Victoria, Wilfredo J. Cardona-Velez, Gerardine G. Botte","doi":"10.1016/j.coelec.2024.101508","DOIUrl":null,"url":null,"abstract":"<div><p>This brief review outlines sustainable and innovative approaches involving electrochemical processes to transform organic waste materials into valuable products. This is defined as electrochemical valorization of organic waste (EVOW). By exploring the waste management landscape, EVOW could significantly contribute to global sustainability goals. This analysis highlights some of the most recent advances in EVOW, focusing on high-volume sources like municipal solid waste, food waste, and synthetic organic waste like plastics. This perspective emphasizes the need for economically viable reactor designs, durable electrodes, and a better understanding of electrocatalytic and electrochemical separation paths. Despite progress, translating theoretical studies into industrial applications remains a challenge, requiring further exploration of economic considerations, life cycle analysis, and scalable technologies. This paper provides insights into advancements, challenges, and prospects, guiding future research for sustainable waste management practices.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324000693/pdfft?md5=011ac31596722fb988014275bada6601&pid=1-s2.0-S2451910324000693-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Perspectives on electrochemical valorization of organic waste\",\"authors\":\"Christian E. Alvarez-Pugliese, Dayana Donneys-Victoria, Wilfredo J. Cardona-Velez, Gerardine G. Botte\",\"doi\":\"10.1016/j.coelec.2024.101508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This brief review outlines sustainable and innovative approaches involving electrochemical processes to transform organic waste materials into valuable products. This is defined as electrochemical valorization of organic waste (EVOW). By exploring the waste management landscape, EVOW could significantly contribute to global sustainability goals. This analysis highlights some of the most recent advances in EVOW, focusing on high-volume sources like municipal solid waste, food waste, and synthetic organic waste like plastics. This perspective emphasizes the need for economically viable reactor designs, durable electrodes, and a better understanding of electrocatalytic and electrochemical separation paths. Despite progress, translating theoretical studies into industrial applications remains a challenge, requiring further exploration of economic considerations, life cycle analysis, and scalable technologies. This paper provides insights into advancements, challenges, and prospects, guiding future research for sustainable waste management practices.</p></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000693/pdfft?md5=011ac31596722fb988014275bada6601&pid=1-s2.0-S2451910324000693-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000693\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000693","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Perspectives on electrochemical valorization of organic waste
This brief review outlines sustainable and innovative approaches involving electrochemical processes to transform organic waste materials into valuable products. This is defined as electrochemical valorization of organic waste (EVOW). By exploring the waste management landscape, EVOW could significantly contribute to global sustainability goals. This analysis highlights some of the most recent advances in EVOW, focusing on high-volume sources like municipal solid waste, food waste, and synthetic organic waste like plastics. This perspective emphasizes the need for economically viable reactor designs, durable electrodes, and a better understanding of electrocatalytic and electrochemical separation paths. Despite progress, translating theoretical studies into industrial applications remains a challenge, requiring further exploration of economic considerations, life cycle analysis, and scalable technologies. This paper provides insights into advancements, challenges, and prospects, guiding future research for sustainable waste management practices.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •