{"title":"具有往复变形的不对称微纤维致动器","authors":"Yuhang Lu, Shiyu Wang and Pingan Zhu","doi":"10.1039/D4IM00017J","DOIUrl":null,"url":null,"abstract":"<p>With the trend towards miniaturization in soft robotics, most microactuators encounter challenges in achieving versatile deformations. Here, we present an innovative microactuator design featuring reciprocal deformation, activated solely by humidity changes. These microactuators adopt an asymmetric microfiber configuration, characterized by a core–shell structure with a hydrophilic shell encapsulating hydrophobic microparticles. Utilizing droplet microfluidics for fabrication enables precise control over microfiber morphology and internal microparticles. During hygroscopic actuation, these microactuators undergo a unique two-stage deformation, exhibiting opposite trends in curvature variation—a stark departure from the unidirectional deformations observed in previous microactuators. The anisotropy inherent in asymmetric microfibers governs water absorption and desorption, driving this distinctive reciprocal deformation. These microactuators demonstrate versatility in controlled droplet transport and solid cargo manipulation, expanding their potential applications. This study not only unveils novel mechanisms but also broadens the functional spectrum of microactuators.</p><p>Keywords: Microactuators; Reciprocal deformation; Droplet microfluidics; Asymmetric microfiber; Liquid templates.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 3","pages":" 441-450"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d4im00017j?page=search","citationCount":"0","resultStr":"{\"title\":\"Asymmetric microfiber actuators with reciprocal deformation†\",\"authors\":\"Yuhang Lu, Shiyu Wang and Pingan Zhu\",\"doi\":\"10.1039/D4IM00017J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the trend towards miniaturization in soft robotics, most microactuators encounter challenges in achieving versatile deformations. Here, we present an innovative microactuator design featuring reciprocal deformation, activated solely by humidity changes. These microactuators adopt an asymmetric microfiber configuration, characterized by a core–shell structure with a hydrophilic shell encapsulating hydrophobic microparticles. Utilizing droplet microfluidics for fabrication enables precise control over microfiber morphology and internal microparticles. During hygroscopic actuation, these microactuators undergo a unique two-stage deformation, exhibiting opposite trends in curvature variation—a stark departure from the unidirectional deformations observed in previous microactuators. The anisotropy inherent in asymmetric microfibers governs water absorption and desorption, driving this distinctive reciprocal deformation. These microactuators demonstrate versatility in controlled droplet transport and solid cargo manipulation, expanding their potential applications. This study not only unveils novel mechanisms but also broadens the functional spectrum of microactuators.</p><p>Keywords: Microactuators; Reciprocal deformation; Droplet microfluidics; Asymmetric microfiber; Liquid templates.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":\" 3\",\"pages\":\" 441-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/im/d4im00017j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/im/d4im00017j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d4im00017j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymmetric microfiber actuators with reciprocal deformation†
With the trend towards miniaturization in soft robotics, most microactuators encounter challenges in achieving versatile deformations. Here, we present an innovative microactuator design featuring reciprocal deformation, activated solely by humidity changes. These microactuators adopt an asymmetric microfiber configuration, characterized by a core–shell structure with a hydrophilic shell encapsulating hydrophobic microparticles. Utilizing droplet microfluidics for fabrication enables precise control over microfiber morphology and internal microparticles. During hygroscopic actuation, these microactuators undergo a unique two-stage deformation, exhibiting opposite trends in curvature variation—a stark departure from the unidirectional deformations observed in previous microactuators. The anisotropy inherent in asymmetric microfibers governs water absorption and desorption, driving this distinctive reciprocal deformation. These microactuators demonstrate versatility in controlled droplet transport and solid cargo manipulation, expanding their potential applications. This study not only unveils novel mechanisms but also broadens the functional spectrum of microactuators.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments