网格代码与多尺度、多场空间位置代码的比较

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Robin Dietrich, Nicolai Waniek, Martin Stemmler, Alois Knoll
{"title":"网格代码与多尺度、多场空间位置代码的比较","authors":"Robin Dietrich, Nicolai Waniek, Martin Stemmler, Alois Knoll","doi":"10.3389/fncom.2024.1276292","DOIUrl":null,"url":null,"abstract":"IntroductionRecent work on bats flying over long distances has revealed that single hippocampal cells have multiple place fields of different sizes. At the network level, a multi-scale, multi-field place cell code outperforms classical single-scale, single-field place codes, yet the performance boundaries of such a code remain an open question. In particular, it is unknown how general multi-field codes compare to a highly regular grid code, in which cells form distinct modules with different scales.MethodsIn this work, we address the coding properties of theoretical spatial coding models with rigorous analyses of comprehensive simulations. Starting from a multi-scale, multi-field network, we performed evolutionary optimization. The resulting multi-field networks sometimes retained the multi-scale property at the single-cell level but most often converged to a single scale, with all place fields in a given cell having the same size. We compared the results against a single-scale single-field code and a one-dimensional grid code, focusing on two main characteristics: the performance of the code itself and the dynamics of the network generating it.ResultsOur simulation experiments revealed that, under normal conditions, a regular grid code outperforms all other codes with respect to decoding accuracy, achieving a given precision with fewer neurons and fields. In contrast, multi-field codes are more robust against noise and lesions, such as random drop-out of neurons, given that the significantly higher number of fields provides redundancy. Contrary to our expectations, the network dynamics of all models, from the original multi-scale models before optimization to the multi-field models that resulted from optimization, did not maintain activity bumps at their original locations when a position-specific external input was removed.DiscussionOptimized multi-field codes appear to strike a compromise between a place code and a grid code that reflects a trade-off between accurate positional encoding and robustness. Surprisingly, the recurrent neural network models we implemented and optimized for either multi- or single-scale, multi-field codes did not intrinsically produce a persistent “memory” of attractor states. These models, therefore, were not continuous attractor networks.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grid codes vs. multi-scale, multi-field place codes for space\",\"authors\":\"Robin Dietrich, Nicolai Waniek, Martin Stemmler, Alois Knoll\",\"doi\":\"10.3389/fncom.2024.1276292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionRecent work on bats flying over long distances has revealed that single hippocampal cells have multiple place fields of different sizes. At the network level, a multi-scale, multi-field place cell code outperforms classical single-scale, single-field place codes, yet the performance boundaries of such a code remain an open question. In particular, it is unknown how general multi-field codes compare to a highly regular grid code, in which cells form distinct modules with different scales.MethodsIn this work, we address the coding properties of theoretical spatial coding models with rigorous analyses of comprehensive simulations. Starting from a multi-scale, multi-field network, we performed evolutionary optimization. The resulting multi-field networks sometimes retained the multi-scale property at the single-cell level but most often converged to a single scale, with all place fields in a given cell having the same size. We compared the results against a single-scale single-field code and a one-dimensional grid code, focusing on two main characteristics: the performance of the code itself and the dynamics of the network generating it.ResultsOur simulation experiments revealed that, under normal conditions, a regular grid code outperforms all other codes with respect to decoding accuracy, achieving a given precision with fewer neurons and fields. In contrast, multi-field codes are more robust against noise and lesions, such as random drop-out of neurons, given that the significantly higher number of fields provides redundancy. Contrary to our expectations, the network dynamics of all models, from the original multi-scale models before optimization to the multi-field models that resulted from optimization, did not maintain activity bumps at their original locations when a position-specific external input was removed.DiscussionOptimized multi-field codes appear to strike a compromise between a place code and a grid code that reflects a trade-off between accurate positional encoding and robustness. Surprisingly, the recurrent neural network models we implemented and optimized for either multi- or single-scale, multi-field codes did not intrinsically produce a persistent “memory” of attractor states. These models, therefore, were not continuous attractor networks.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1276292\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1276292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:最近对长距离飞行的蝙蝠进行的研究发现,单个海马细胞具有多个不同大小的位置场。在网络水平上,多尺度、多场的位置细胞代码优于经典的单尺度、单场位置代码,但这种代码的性能边界仍是一个未决问题。特别是,一般的多场编码与高度规则的网格编码相比如何,我们还不得而知,在网格编码中,单元形成了不同尺度的不同模块。方法在这项工作中,我们通过对综合模拟的严格分析,解决了理论空间编码模型的编码特性问题。从多尺度、多场网络开始,我们进行了进化优化。由此产生的多场网络有时在单细胞水平上保留了多尺度特性,但最常见的情况是趋同于单一尺度,即给定细胞中的所有位置场都具有相同的大小。我们将结果与单尺度单字段代码和一维网格代码进行了比较,重点关注两个主要特征:代码本身的性能和生成代码的网络的动态。结果我们的模拟实验表明,在正常情况下,常规网格代码的解码精度优于所有其他代码,它能以较少的神经元和字段达到一定的精度。相比之下,多场编码对噪声和神经元随机脱落等病变具有更强的鲁棒性,因为场的数量大大增加提供了冗余。与我们的预期相反,从优化前的原始多尺度模型到优化后的多场模型,当特定位置的外部输入被移除时,所有模型的网络动力学都没有在其原始位置保持活动突起。令人惊讶的是,我们为多尺度或单尺度多场编码实现并优化的递归神经网络模型并没有从本质上产生持久的吸引子状态 "记忆"。因此,这些模型并非连续吸引子网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grid codes vs. multi-scale, multi-field place codes for space
IntroductionRecent work on bats flying over long distances has revealed that single hippocampal cells have multiple place fields of different sizes. At the network level, a multi-scale, multi-field place cell code outperforms classical single-scale, single-field place codes, yet the performance boundaries of such a code remain an open question. In particular, it is unknown how general multi-field codes compare to a highly regular grid code, in which cells form distinct modules with different scales.MethodsIn this work, we address the coding properties of theoretical spatial coding models with rigorous analyses of comprehensive simulations. Starting from a multi-scale, multi-field network, we performed evolutionary optimization. The resulting multi-field networks sometimes retained the multi-scale property at the single-cell level but most often converged to a single scale, with all place fields in a given cell having the same size. We compared the results against a single-scale single-field code and a one-dimensional grid code, focusing on two main characteristics: the performance of the code itself and the dynamics of the network generating it.ResultsOur simulation experiments revealed that, under normal conditions, a regular grid code outperforms all other codes with respect to decoding accuracy, achieving a given precision with fewer neurons and fields. In contrast, multi-field codes are more robust against noise and lesions, such as random drop-out of neurons, given that the significantly higher number of fields provides redundancy. Contrary to our expectations, the network dynamics of all models, from the original multi-scale models before optimization to the multi-field models that resulted from optimization, did not maintain activity bumps at their original locations when a position-specific external input was removed.DiscussionOptimized multi-field codes appear to strike a compromise between a place code and a grid code that reflects a trade-off between accurate positional encoding and robustness. Surprisingly, the recurrent neural network models we implemented and optimized for either multi- or single-scale, multi-field codes did not intrinsically produce a persistent “memory” of attractor states. These models, therefore, were not continuous attractor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信