灵活的列表着色:最大限度地满足请求数量

Pub Date : 2024-04-18 DOI:10.1002/jgt.23103
Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, Michael J. Pelsmajer
{"title":"灵活的列表着色:最大限度地满足请求数量","authors":"Hemanshu Kaul,&nbsp;Rogers Mathew,&nbsp;Jeffrey A. Mudrock,&nbsp;Michael J. Pelsmajer","doi":"10.1002/jgt.23103","DOIUrl":null,"url":null,"abstract":"<p>Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>ϵ</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a graph, <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math> is a list assignment for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is a function with nonempty domain <span></span><math>\n \n <mrow>\n <mi>D</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for each <span></span><math>\n \n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>D</mi>\n </mrow></math> (<span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is called a request of <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math>). The triple <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>L</mi>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math>-satisfiable if there exists a proper <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math>-coloring <span></span><math>\n \n <mrow>\n <mi>f</mi>\n </mrow></math> of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for at least <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>∣</mo>\n \n <mi>D</mi>\n \n <mo>∣</mo>\n </mrow></math> vertices in <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math>. We say <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible if <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>,</mo>\n \n <msup>\n <mi>r</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math>-satisfiable whenever <span></span><math>\n \n <mrow>\n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-assignment for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msup>\n <mi>r</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math> is a request of <span></span><math>\n \n <mrow>\n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math>. It was shown by Dvořák et al. that if <span></span><math>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> is prime, <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graph, and <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is a request for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> with domain of size 1, then <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>L</mi>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is 1-satisfiable whenever <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-assignment. In this paper, we extend this result to all <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math> for bipartite <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graphs.</p><p>The literature on flexible list coloring tends to focus on showing that for a fixed graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow></math> there exists an <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible, but it is natural to try to find the largest possible <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math> for which <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. In this vein, we improve a result of Dvořák et al., by showing <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graphs are <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. In pursuit of the largest <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math> for which a graph is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible, we observe that a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is not <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> if and only if <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>&gt;</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the Hall ratio of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and we initiate the study of the <i>list flexibility number of a graph</i> <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, which is the smallest <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible list colorings: Maximizing the number of requests satisfied\",\"authors\":\"Hemanshu Kaul,&nbsp;Rogers Mathew,&nbsp;Jeffrey A. Mudrock,&nbsp;Michael J. Pelsmajer\",\"doi\":\"10.1002/jgt.23103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose <span></span><math>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>ϵ</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>1</mn>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a graph, <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math> is a list assignment for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, and <span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow></math> is a function with nonempty domain <span></span><math>\\n \\n <mrow>\\n <mi>D</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∈</mo>\\n \\n <mi>L</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for each <span></span><math>\\n \\n <mrow>\\n <mi>v</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>D</mi>\\n </mrow></math> (<span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow></math> is called a request of <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math>). The triple <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>L</mi>\\n \\n <mo>,</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math>-satisfiable if there exists a proper <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math>-coloring <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n </mrow></math> of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for at least <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n \\n <mo>∣</mo>\\n \\n <mi>D</mi>\\n \\n <mo>∣</mo>\\n </mrow></math> vertices in <span></span><math>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow></math>. We say <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible if <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>L</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>r</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math>-satisfiable whenever <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>L</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow></math> is a <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-assignment for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>r</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow></math> is a request of <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>L</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow></math>. It was shown by Dvořák et al. that if <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math> is prime, <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math>-degenerate graph, and <span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow></math> is a request for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> with domain of size 1, then <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>L</mi>\\n \\n <mo>,</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is 1-satisfiable whenever <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math> is a <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-assignment. In this paper, we extend this result to all <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math> for bipartite <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math>-degenerate graphs.</p><p>The literature on flexible list coloring tends to focus on showing that for a fixed graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow></math> there exists an <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible, but it is natural to try to find the largest possible <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math> for which <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible. In this vein, we improve a result of Dvořák et al., by showing <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math>-degenerate graphs are <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible. In pursuit of the largest <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math> for which a graph is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible, we observe that a graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is not <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible for any <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> if and only if <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>ρ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <mi>ρ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is the Hall ratio of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, and we initiate the study of the <i>list flexibility number of a graph</i> <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, which is the smallest <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>ρ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

灵活列表着色由 Dvořák、Norin 和 Postle 于 2019 年提出。假设 ,是一个图,是对 ,的列表赋值,并且是一个具有非空域的函数,这样对于每个 ( 称为 )的请求。如果存在一个适当的 ,且至少对...中的顶点而言,...是可满足的,那么这个三元组就是...可满足的。德沃夏克(Dvořák)等人曾证明,如果是质数,是退化图,并且是域大小为 1 的请求,那么只要是分配,就是可满足的。在本文中,我们将这一结果扩展到所有双向-退化图。关于灵活列表着色的文献往往侧重于证明对于一个固定的图,存在一个这样的-灵活,但很自然的是,我们试图找到最大可能的-灵活。为此,我们改进了德沃夏克等人的一项成果,证明了-退化图是-灵活的。在追求图的最大-柔性时,我们观察到,当且仅当 ,为 ,的霍尔比时,图对于任何都不是-柔性的,因此我们开始研究图的列表柔性数,它是-柔性的最小值。我们研究了图的列表柔性数、列表色度数、列表包装数和退化性之间的关系和联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Flexible list colorings: Maximizing the number of requests satisfied

Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose 0 ϵ 1 , G is a graph, L is a list assignment for G , and r is a function with nonempty domain D V ( G ) such that r ( v ) L ( v ) for each v D ( r is called a request of L ). The triple ( G , L , r ) is ϵ -satisfiable if there exists a proper L -coloring f of G such that f ( v ) = r ( v ) for at least ϵ D vertices in D . We say G is ( k , ϵ ) -flexible if ( G , L , r ) is ϵ -satisfiable whenever L is a k -assignment for G and r is a request of L . It was shown by Dvořák et al. that if d + 1 is prime, G is a d -degenerate graph, and r is a request for G with domain of size 1, then ( G , L , r ) is 1-satisfiable whenever L is a ( d + 1 ) -assignment. In this paper, we extend this result to all d for bipartite d -degenerate graphs.

The literature on flexible list coloring tends to focus on showing that for a fixed graph G and k N there exists an ϵ > 0 such that G is ( k , ϵ ) -flexible, but it is natural to try to find the largest possible ϵ for which G is ( k , ϵ ) -flexible. In this vein, we improve a result of Dvořák et al., by showing d -degenerate graphs are ( d + 2 , 1 2 d + 1 ) -flexible. In pursuit of the largest ϵ for which a graph is ( k , ϵ ) -flexible, we observe that a graph G is not ( k , ϵ ) -flexible for any k if and only if ϵ > 1 ρ ( G ) , where ρ ( G ) is the Hall ratio of G , and we initiate the study of the list flexibility number of a graph G , which is the smallest k such that G is ( k , 1 ρ ( G ) ) -flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信