Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, Michael J. Pelsmajer
求助PDF
{"title":"灵活的列表着色:最大限度地满足请求数量","authors":"Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, Michael J. Pelsmajer","doi":"10.1002/jgt.23103","DOIUrl":null,"url":null,"abstract":"<p>Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>ϵ</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a graph, <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math> is a list assignment for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is a function with nonempty domain <span></span><math>\n \n <mrow>\n <mi>D</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for each <span></span><math>\n \n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>D</mi>\n </mrow></math> (<span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is called a request of <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math>). The triple <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>L</mi>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math>-satisfiable if there exists a proper <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math>-coloring <span></span><math>\n \n <mrow>\n <mi>f</mi>\n </mrow></math> of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for at least <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>∣</mo>\n \n <mi>D</mi>\n \n <mo>∣</mo>\n </mrow></math> vertices in <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math>. We say <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible if <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>,</mo>\n \n <msup>\n <mi>r</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math>-satisfiable whenever <span></span><math>\n \n <mrow>\n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-assignment for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msup>\n <mi>r</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math> is a request of <span></span><math>\n \n <mrow>\n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math>. It was shown by Dvořák et al. that if <span></span><math>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> is prime, <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graph, and <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is a request for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> with domain of size 1, then <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>L</mi>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is 1-satisfiable whenever <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-assignment. In this paper, we extend this result to all <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math> for bipartite <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graphs.</p><p>The literature on flexible list coloring tends to focus on showing that for a fixed graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow></math> there exists an <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible, but it is natural to try to find the largest possible <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math> for which <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. In this vein, we improve a result of Dvořák et al., by showing <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graphs are <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. In pursuit of the largest <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math> for which a graph is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible, we observe that a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is not <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> if and only if <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>></mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the Hall ratio of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and we initiate the study of the <i>list flexibility number of a graph</i> <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, which is the smallest <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"887-906"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible list colorings: Maximizing the number of requests satisfied\",\"authors\":\"Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, Michael J. Pelsmajer\",\"doi\":\"10.1002/jgt.23103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose <span></span><math>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>ϵ</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>1</mn>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a graph, <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math> is a list assignment for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, and <span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow></math> is a function with nonempty domain <span></span><math>\\n \\n <mrow>\\n <mi>D</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∈</mo>\\n \\n <mi>L</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for each <span></span><math>\\n \\n <mrow>\\n <mi>v</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>D</mi>\\n </mrow></math> (<span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow></math> is called a request of <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math>). The triple <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>L</mi>\\n \\n <mo>,</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math>-satisfiable if there exists a proper <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math>-coloring <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n </mrow></math> of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for at least <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n \\n <mo>∣</mo>\\n \\n <mi>D</mi>\\n \\n <mo>∣</mo>\\n </mrow></math> vertices in <span></span><math>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow></math>. We say <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible if <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>L</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>r</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math>-satisfiable whenever <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>L</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow></math> is a <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-assignment for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>r</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow></math> is a request of <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>L</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow></math>. It was shown by Dvořák et al. that if <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math> is prime, <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math>-degenerate graph, and <span></span><math>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow></math> is a request for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> with domain of size 1, then <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>L</mi>\\n \\n <mo>,</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is 1-satisfiable whenever <span></span><math>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow></math> is a <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-assignment. In this paper, we extend this result to all <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math> for bipartite <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math>-degenerate graphs.</p><p>The literature on flexible list coloring tends to focus on showing that for a fixed graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow></math> there exists an <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n \\n <mo>></mo>\\n \\n <mn>0</mn>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible, but it is natural to try to find the largest possible <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math> for which <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible. In this vein, we improve a result of Dvořák et al., by showing <span></span><math>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow></math>-degenerate graphs are <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible. In pursuit of the largest <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow></math> for which a graph is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible, we observe that a graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is not <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible for any <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> if and only if <span></span><math>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n \\n <mo>></mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>ρ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <mi>ρ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is the Hall ratio of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, and we initiate the study of the <i>list flexibility number of a graph</i> <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, which is the smallest <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>ρ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>-flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"887-906\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用