论一类椭圆正交多项式及其可积分性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Harini Desiraju, Tomas Lasic Latimer, Pieter Roffelsen
{"title":"论一类椭圆正交多项式及其可积分性","authors":"Harini Desiraju, Tomas Lasic Latimer, Pieter Roffelsen","doi":"10.1007/s00365-024-09687-z","DOIUrl":null,"url":null,"abstract":"<p>Building upon the recent works of Bertola; Fasondini, Olver and Xu, we define a class of orthogonal polynomials on elliptic curves and establish a corresponding Riemann–Hilbert framework. We then focus on the special case, defined by a constant weight function, and use the Riemann–Hilbert problem to derive recurrence relations and differential equations for the orthogonal polynomials. We further show that the sub-class of even polynomials is associated to the elliptic form of Painlevé VI, with the tau function given by the Hankel determinant of even moments, up to a scaling factor. The first iteration of these even polynomials relates to the special case of Painlevé VI studied by Hitchin in relation to self-dual Einstein metrics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Class of Elliptic Orthogonal Polynomials and their Integrability\",\"authors\":\"Harini Desiraju, Tomas Lasic Latimer, Pieter Roffelsen\",\"doi\":\"10.1007/s00365-024-09687-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Building upon the recent works of Bertola; Fasondini, Olver and Xu, we define a class of orthogonal polynomials on elliptic curves and establish a corresponding Riemann–Hilbert framework. We then focus on the special case, defined by a constant weight function, and use the Riemann–Hilbert problem to derive recurrence relations and differential equations for the orthogonal polynomials. We further show that the sub-class of even polynomials is associated to the elliptic form of Painlevé VI, with the tau function given by the Hankel determinant of even moments, up to a scaling factor. The first iteration of these even polynomials relates to the special case of Painlevé VI studied by Hitchin in relation to self-dual Einstein metrics.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-024-09687-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09687-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在 Bertola、Fasondini、Olver 和 Xu 的最新研究成果基础上,我们定义了一类椭圆曲线上的正交多项式,并建立了相应的黎曼-希尔伯特框架。然后,我们将重点放在由常数权函数定义的特殊情况上,并利用黎曼-希尔伯特问题推导出正交多项式的递推关系和微分方程。我们进一步证明,偶次多项式子类与 Painlevé VI 的椭圆形式相关联,其 tau 函数由偶次矩的 Hankel 行列式给出,但不超过一个缩放因子。这些偶次多项式的第一次迭代与希钦研究的与自偶爱因斯坦度量相关的 Painlevé VI 特例有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a Class of Elliptic Orthogonal Polynomials and their Integrability

On a Class of Elliptic Orthogonal Polynomials and their Integrability

Building upon the recent works of Bertola; Fasondini, Olver and Xu, we define a class of orthogonal polynomials on elliptic curves and establish a corresponding Riemann–Hilbert framework. We then focus on the special case, defined by a constant weight function, and use the Riemann–Hilbert problem to derive recurrence relations and differential equations for the orthogonal polynomials. We further show that the sub-class of even polynomials is associated to the elliptic form of Painlevé VI, with the tau function given by the Hankel determinant of even moments, up to a scaling factor. The first iteration of these even polynomials relates to the special case of Painlevé VI studied by Hitchin in relation to self-dual Einstein metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信