{"title":"n 维不可压缩纳维-斯托克斯方程全局弱解的所有阶衍生物的精确极限和改进衰减估计值","authors":"Ling-hai Zhang","doi":"10.1007/s10255-024-1070-2","DOIUrl":null,"url":null,"abstract":"<p>We couple together existing ideas, existing results, special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an <i>n</i>-dimensional incompressible Navier-Stokes equations. We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Exact Limits and Improved Decay Estimates for All Order Derivatives of the Global Weak Solutions of n-Dimensional Incompressible Navier-Stokes Equations\",\"authors\":\"Ling-hai Zhang\",\"doi\":\"10.1007/s10255-024-1070-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We couple together existing ideas, existing results, special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an <i>n</i>-dimensional incompressible Navier-Stokes equations. We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1070-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1070-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们将现有思想、现有结果、特殊结构和新颖思想结合起来,完成了 n 维不可压缩纳维-斯托克斯方程的考希问题全局弱解的精确极限和改进的衰减估计,并具有尖锐的衰减率。我们还利用相应热方程的全局平稳解来近似不可压缩 Navier-Stokes 方程的全局弱解。
The Exact Limits and Improved Decay Estimates for All Order Derivatives of the Global Weak Solutions of n-Dimensional Incompressible Navier-Stokes Equations
We couple together existing ideas, existing results, special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations. We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.