{"title":"单位球上一位压缩传感的可靠迭代算法","authors":"Yan-cheng Lu, Ning Bi, An-hua Wan","doi":"10.1007/s10255-024-1046-2","DOIUrl":null,"url":null,"abstract":"<div><p>The one-bit compressed sensing problem is of fundamental importance in many areas, such as wireless communication, statistics, and so on. However, the optimization of one-bit problem constrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity. In this paper, an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere, with iterating formula </p><div><div><span>$${x^{k + 1}} = \\mathop {\\arg \\min }\\limits_{x \\in \\,C} \\{ ||x|{|_1} + {\\eta _1}||{x^k}|{|_1}\\max (||x||_2^2,1) - 2{\\eta _2}||{x^k}|{|_1}\\langle x,{x^k}\\rangle \\} ,$$</span></div></div><p> where <i>C</i> is the convex cone generated by the one-bit measurements and <span>\\({\\eta _1} > {\\eta _2} > {1 \\over 2}\\)</span>. The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements, and the convergence to the global minimum point of the <i>ℓ</i><sub>1</sub> norm is discussed.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"801 - 822"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reliable Iteration Algorithm for One-Bit Compressive Sensing on the Unit Sphere\",\"authors\":\"Yan-cheng Lu, Ning Bi, An-hua Wan\",\"doi\":\"10.1007/s10255-024-1046-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The one-bit compressed sensing problem is of fundamental importance in many areas, such as wireless communication, statistics, and so on. However, the optimization of one-bit problem constrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity. In this paper, an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere, with iterating formula </p><div><div><span>$${x^{k + 1}} = \\\\mathop {\\\\arg \\\\min }\\\\limits_{x \\\\in \\\\,C} \\\\{ ||x|{|_1} + {\\\\eta _1}||{x^k}|{|_1}\\\\max (||x||_2^2,1) - 2{\\\\eta _2}||{x^k}|{|_1}\\\\langle x,{x^k}\\\\rangle \\\\} ,$$</span></div></div><p> where <i>C</i> is the convex cone generated by the one-bit measurements and <span>\\\\({\\\\eta _1} > {\\\\eta _2} > {1 \\\\over 2}\\\\)</span>. The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements, and the convergence to the global minimum point of the <i>ℓ</i><sub>1</sub> norm is discussed.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"801 - 822\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1046-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1046-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Reliable Iteration Algorithm for One-Bit Compressive Sensing on the Unit Sphere
The one-bit compressed sensing problem is of fundamental importance in many areas, such as wireless communication, statistics, and so on. However, the optimization of one-bit problem constrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity. In this paper, an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere, with iterating formula
where C is the convex cone generated by the one-bit measurements and \({\eta _1} > {\eta _2} > {1 \over 2}\). The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements, and the convergence to the global minimum point of the ℓ1 norm is discussed.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.