临界加尔顿-沃森分支过程的大偏差

Pub Date : 2024-04-19 DOI:10.1007/s10255-024-1058-y
Dou-dou Li, Wan-lin Shi, Mei Zhang
{"title":"临界加尔顿-沃森分支过程的大偏差","authors":"Dou-dou Li, Wan-lin Shi, Mei Zhang","doi":"10.1007/s10255-024-1058-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a critical Galton-Watson branching process {<i>Z</i><sub><i>n</i></sub>} is considered. Large deviation rates of <span>\\({S_{{Z_n}}}: = \\sum\\limits_{i = 1}^{{Z_n}} {{X_i}} \\)</span> are obtained, where {<i>X</i><sub><i>i</i></sub>, <i>i</i> ≥ 1} is a sequence of independent and identically distributed random variables and <i>X</i><sub>1</sub> is in the domain of attraction of an <i>α</i>-stable law with <i>α</i> ∈ (0, 2). One shall see that the convergence rate is determined by the tail index of <i>X</i><sub>1</sub> and the variance of <i>Z</i><sub>1</sub>. Our results can be compared with those ones of the supercritical case.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Deviations for a Critical Galton-Watson Branching Process\",\"authors\":\"Dou-dou Li, Wan-lin Shi, Mei Zhang\",\"doi\":\"10.1007/s10255-024-1058-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a critical Galton-Watson branching process {<i>Z</i><sub><i>n</i></sub>} is considered. Large deviation rates of <span>\\\\({S_{{Z_n}}}: = \\\\sum\\\\limits_{i = 1}^{{Z_n}} {{X_i}} \\\\)</span> are obtained, where {<i>X</i><sub><i>i</i></sub>, <i>i</i> ≥ 1} is a sequence of independent and identically distributed random variables and <i>X</i><sub>1</sub> is in the domain of attraction of an <i>α</i>-stable law with <i>α</i> ∈ (0, 2). One shall see that the convergence rate is determined by the tail index of <i>X</i><sub>1</sub> and the variance of <i>Z</i><sub>1</sub>. Our results can be compared with those ones of the supercritical case.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1058-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1058-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了临界 Galton-Watson 分支过程 {Zn}。得到了 \({S_{Z_n}}: = \sum\limits_{i = 1}^{Z_n}} {{X_i}} \) 的大偏差率,其中 {Xi, i ≥ 1} 是独立且同分布的随机变量序列,X1 位于α稳定定律的吸引域内(α∈ (0, 2))。我们将看到,收敛速度由 X1 的尾指数和 Z1 的方差决定。我们的结果可以与超临界情况下的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Large Deviations for a Critical Galton-Watson Branching Process

In this paper, a critical Galton-Watson branching process {Zn} is considered. Large deviation rates of \({S_{{Z_n}}}: = \sum\limits_{i = 1}^{{Z_n}} {{X_i}} \) are obtained, where {Xi, i ≥ 1} is a sequence of independent and identically distributed random variables and X1 is in the domain of attraction of an α-stable law with α ∈ (0, 2). One shall see that the convergence rate is determined by the tail index of X1 and the variance of Z1. Our results can be compared with those ones of the supercritical case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信