二维稳定高超声速极限欧拉流通过带表皮摩擦匝道时的广义牛顿-布塞曼定律

Pub Date : 2024-04-19 DOI:10.1007/s10255-024-1087-6
Ai-fang Qu, Xue-ying Su, Hai-rong Yuan
{"title":"二维稳定高超声速极限欧拉流通过带表皮摩擦匝道时的广义牛顿-布塞曼定律","authors":"Ai-fang Qu, Xue-ying Su, Hai-rong Yuan","doi":"10.1007/s10255-024-1087-6","DOIUrl":null,"url":null,"abstract":"<p>By considering Radon measure solutions for boundary value problems of stationary non-isentropic compressible Euler equations on hypersonic-limit flows passing ramps with frictions on their boundaries, we construct solutions with density containing Dirac measures supported on the boundaries of the ramps, which represent the infinite-thin shock layers under different assumptions on the skin-frictions. We thus derive corresponding generalizations of the celebrated Newton-Busemann law in hypersonic aerodynamics for distributions of drags/lifts on ramps.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Newton-Busemann Law for Two-dimensional Steady Hypersonic-limit Euler Flows Passing Ramps with Skin-frictions\",\"authors\":\"Ai-fang Qu, Xue-ying Su, Hai-rong Yuan\",\"doi\":\"10.1007/s10255-024-1087-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By considering Radon measure solutions for boundary value problems of stationary non-isentropic compressible Euler equations on hypersonic-limit flows passing ramps with frictions on their boundaries, we construct solutions with density containing Dirac measures supported on the boundaries of the ramps, which represent the infinite-thin shock layers under different assumptions on the skin-frictions. We thus derive corresponding generalizations of the celebrated Newton-Busemann law in hypersonic aerodynamics for distributions of drags/lifts on ramps.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1087-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1087-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过考虑高超音速极限流经过其边界上有摩擦的斜面上的静止非各向同性可压缩欧拉方程的边界值问题的拉顿量解,我们构建了密度包含斜面边界上支持的狄拉克量的解,它代表了皮肤摩擦不同假设下的无限薄冲击层。因此,我们推导出高超音速空气动力学中著名的牛顿-布塞曼定律在斜面上阻力/升力分布的相应概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized Newton-Busemann Law for Two-dimensional Steady Hypersonic-limit Euler Flows Passing Ramps with Skin-frictions

By considering Radon measure solutions for boundary value problems of stationary non-isentropic compressible Euler equations on hypersonic-limit flows passing ramps with frictions on their boundaries, we construct solutions with density containing Dirac measures supported on the boundaries of the ramps, which represent the infinite-thin shock layers under different assumptions on the skin-frictions. We thus derive corresponding generalizations of the celebrated Newton-Busemann law in hypersonic aerodynamics for distributions of drags/lifts on ramps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信