{"title":"二维稳定高超声速极限欧拉流通过带表皮摩擦匝道时的广义牛顿-布塞曼定律","authors":"Ai-fang Qu, Xue-ying Su, Hai-rong Yuan","doi":"10.1007/s10255-024-1087-6","DOIUrl":null,"url":null,"abstract":"<p>By considering Radon measure solutions for boundary value problems of stationary non-isentropic compressible Euler equations on hypersonic-limit flows passing ramps with frictions on their boundaries, we construct solutions with density containing Dirac measures supported on the boundaries of the ramps, which represent the infinite-thin shock layers under different assumptions on the skin-frictions. We thus derive corresponding generalizations of the celebrated Newton-Busemann law in hypersonic aerodynamics for distributions of drags/lifts on ramps.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Newton-Busemann Law for Two-dimensional Steady Hypersonic-limit Euler Flows Passing Ramps with Skin-frictions\",\"authors\":\"Ai-fang Qu, Xue-ying Su, Hai-rong Yuan\",\"doi\":\"10.1007/s10255-024-1087-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By considering Radon measure solutions for boundary value problems of stationary non-isentropic compressible Euler equations on hypersonic-limit flows passing ramps with frictions on their boundaries, we construct solutions with density containing Dirac measures supported on the boundaries of the ramps, which represent the infinite-thin shock layers under different assumptions on the skin-frictions. We thus derive corresponding generalizations of the celebrated Newton-Busemann law in hypersonic aerodynamics for distributions of drags/lifts on ramps.</p>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1087-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1087-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Generalized Newton-Busemann Law for Two-dimensional Steady Hypersonic-limit Euler Flows Passing Ramps with Skin-frictions
By considering Radon measure solutions for boundary value problems of stationary non-isentropic compressible Euler equations on hypersonic-limit flows passing ramps with frictions on their boundaries, we construct solutions with density containing Dirac measures supported on the boundaries of the ramps, which represent the infinite-thin shock layers under different assumptions on the skin-frictions. We thus derive corresponding generalizations of the celebrated Newton-Busemann law in hypersonic aerodynamics for distributions of drags/lifts on ramps.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.