用于干旱地区大气集水(AWH)的碳/沸石 13X 成分

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Ali Mehdikhani, Esmaeil Salahi, Jahangir Shahmoradi
{"title":"用于干旱地区大气集水(AWH)的碳/沸石 13X 成分","authors":"Ali Mehdikhani,&nbsp;Esmaeil Salahi,&nbsp;Jahangir Shahmoradi","doi":"10.1007/s10450-024-00476-5","DOIUrl":null,"url":null,"abstract":"<div><p>To develop atmospheric water harvesting (AWH) technology, Zeolite 13X (Z) powder was hydrothermally produced with the addition of different grain sizes of carbon black additive (C) to adsorb air moisture at night and release the water adsorbed by solar irradiation during the day. Various characterization techniques were utilized, including X-ray diffractometry, Brunauer–Emmett–Teller (BET) nitrogen adsorption, field emission scanning electron microscopy (FESEM), UV‒Vis analysis, and a solar simulator, It was determined that the composition of 95%zeolite 13X-5% carbon black with a particle size of ~50 nanometers (ZC55) yielded the best result. The mentioned composition (ZC55) after one hour of exposure under a standard solar simulator flux of 1000 W/m<sup>2</sup> by bringing the temperature of the composition to 110°C achieved the highest moisture removal in the composite. This compound evaporated 50% of the adsorbed water after one hour (0.15 g/g), from 0.31 g/g sorption capacity.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"859 - 865"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon/zeolite 13X composition for atmospheric water harvesting (AWH) application in arid regions\",\"authors\":\"Ali Mehdikhani,&nbsp;Esmaeil Salahi,&nbsp;Jahangir Shahmoradi\",\"doi\":\"10.1007/s10450-024-00476-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To develop atmospheric water harvesting (AWH) technology, Zeolite 13X (Z) powder was hydrothermally produced with the addition of different grain sizes of carbon black additive (C) to adsorb air moisture at night and release the water adsorbed by solar irradiation during the day. Various characterization techniques were utilized, including X-ray diffractometry, Brunauer–Emmett–Teller (BET) nitrogen adsorption, field emission scanning electron microscopy (FESEM), UV‒Vis analysis, and a solar simulator, It was determined that the composition of 95%zeolite 13X-5% carbon black with a particle size of ~50 nanometers (ZC55) yielded the best result. The mentioned composition (ZC55) after one hour of exposure under a standard solar simulator flux of 1000 W/m<sup>2</sup> by bringing the temperature of the composition to 110°C achieved the highest moisture removal in the composite. This compound evaporated 50% of the adsorbed water after one hour (0.15 g/g), from 0.31 g/g sorption capacity.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"859 - 865\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00476-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00476-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了开发大气集水(AWH)技术,采用水热法生产了沸石 13X(Z)粉末,并添加了不同粒度的炭黑添加剂(C),以便在夜间吸附空气中的水分,并在白天释放通过太阳照射吸附的水分。使用了多种表征技术,包括 X 射线衍射仪、Brunauer-Emmett-Teller(BET)氮吸附、场发射扫描电子显微镜(FESEM)、紫外可见光分析和太阳能模拟器。将上述成分(ZC55)置于 1000 W/m2 的标准太阳模拟器通量下曝晒一小时后,将成分温度升至 110°C,复合材料中的水分去除率最高。这种复合材料的吸附容量为 0.31 克/克,一小时后蒸发了 50%的吸附水(0.15 克/克)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon/zeolite 13X composition for atmospheric water harvesting (AWH) application in arid regions

Carbon/zeolite 13X composition for atmospheric water harvesting (AWH) application in arid regions

To develop atmospheric water harvesting (AWH) technology, Zeolite 13X (Z) powder was hydrothermally produced with the addition of different grain sizes of carbon black additive (C) to adsorb air moisture at night and release the water adsorbed by solar irradiation during the day. Various characterization techniques were utilized, including X-ray diffractometry, Brunauer–Emmett–Teller (BET) nitrogen adsorption, field emission scanning electron microscopy (FESEM), UV‒Vis analysis, and a solar simulator, It was determined that the composition of 95%zeolite 13X-5% carbon black with a particle size of ~50 nanometers (ZC55) yielded the best result. The mentioned composition (ZC55) after one hour of exposure under a standard solar simulator flux of 1000 W/m2 by bringing the temperature of the composition to 110°C achieved the highest moisture removal in the composite. This compound evaporated 50% of the adsorbed water after one hour (0.15 g/g), from 0.31 g/g sorption capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信