脉冲功率驱动的辐射冷却磁重联模拟

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Rishabh Datta, Aidan Crilly, Jeremy P. Chittenden, Simran Chowdhry, Katherine Chandler, Nikita Chaturvedi, Clayton E. Myers, William R. Fox, Stephanie B. Hansen, Chris A. Jennings, Hantao Ji, Carolyn C. Kuranz, Sergey V. Lebedev, Dmitri A. Uzdensky, Jack D. Hare
{"title":"脉冲功率驱动的辐射冷却磁重联模拟","authors":"Rishabh Datta, Aidan Crilly, Jeremy P. Chittenden, Simran Chowdhry, Katherine Chandler, Nikita Chaturvedi, Clayton E. Myers, William R. Fox, Stephanie B. Hansen, Chris A. Jennings, Hantao Ji, Carolyn C. Kuranz, Sergey V. Lebedev, Dmitri A. Uzdensky, Jack D. Hare","doi":"10.1017/s0022377824000448","DOIUrl":null,"url":null,"abstract":"Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$P_{1/3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000448_inline1.png\" /> </jats:alternatives> </jats:inline-formula> multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number <jats:inline-formula> <jats:alternatives> <jats:tex-math>$M_A \\approx 1.5$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000448_inline2.png\" /> </jats:alternatives> </jats:inline-formula>), supersonic (Sonic Mach number <jats:inline-formula> <jats:alternatives> <jats:tex-math>$M_S \\approx 4-5$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000448_inline3.png\" /> </jats:alternatives> </jats:inline-formula>) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L/\\delta \\approx 100$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000448_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, Lundquist number <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S_L \\approx 400$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000448_inline1d.png\" /> </jats:alternatives> </jats:inline-formula>). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\tau _{\\text {cool}}^{-1}/\\tau _{H}^{-1}\\approx 100$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000448_inline5.png\" /> </jats:alternatives> </jats:inline-formula>); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"62 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulations of radiatively cooled magnetic reconnection driven by pulsed power\",\"authors\":\"Rishabh Datta, Aidan Crilly, Jeremy P. Chittenden, Simran Chowdhry, Katherine Chandler, Nikita Chaturvedi, Clayton E. Myers, William R. Fox, Stephanie B. Hansen, Chris A. Jennings, Hantao Ji, Carolyn C. Kuranz, Sergey V. Lebedev, Dmitri A. Uzdensky, Jack D. Hare\",\"doi\":\"10.1017/s0022377824000448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$P_{1/3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000448_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number <jats:inline-formula> <jats:alternatives> <jats:tex-math>$M_A \\\\approx 1.5$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000448_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>), supersonic (Sonic Mach number <jats:inline-formula> <jats:alternatives> <jats:tex-math>$M_S \\\\approx 4-5$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000448_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula>) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L/\\\\delta \\\\approx 100$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000448_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula>, Lundquist number <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S_L \\\\approx 400$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000448_inline1d.png\\\" /> </jats:alternatives> </jats:inline-formula>). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\tau _{\\\\text {cool}}^{-1}/\\\\tau _{H}^{-1}\\\\approx 100$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000448_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula>); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000448\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000448","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

磁重联是天体物理环境中的一个重要过程,因为它能重新配置磁场拓扑结构,并将磁能转化为热能和动能。在黑洞日冕和脉冲星磁层等极端天体物理系统中,辐射冷却会通过辐射掉内部能量来改变能量分区,从而导致重联层的辐射塌陷。在本文中,我们进行了二维和三维模拟,以模拟 MARZ(Z 上的磁性再连接)实验,其目的是在实验室中获得必要的冷却率,以研究以前未探索过的辐射冷却机制中的再连接。这些模拟是在 GORGON 中进行的,GORGON 是一种欧拉双温电阻磁流体动力学代码,它模拟的实验几何形状包括由 Z 机器(桑迪亚国家实验室)上 20 MA 电流驱动的两个爆炸线阵列。辐射损耗是通过使用原子代码 Spk 计算的非局部热力学平衡表来实现的,我们还通过实施局部辐射损耗模型和 $P_{1/3}$ 多组辐射传输来探测辐射传输的影响。载荷会产生高度碰撞、超阿尔弗韦尼(阿尔弗韦尼马赫数约为1.5)、超音速(声波马赫数约为4-5)的强驱动等离子体流,这些等离子体流会产生一个拉长的再连接层(纵横比约为100,伦奎斯特数约为400)。当辐射损耗超过欧姆加热和压缩加热的速率时,重连接层会发生辐射塌缩(冷却速率/流体动力传输速率 = $\tau _{text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$);这会产生一个冷的强压缩电流片,导致重连接速率加快,这与理论预测一致。最后,电流片在质点不稳定性下也是不稳定的,但是磁岛在被抛出磁层之前就被强烈的辐射冷却所熄灭了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulations of radiatively cooled magnetic reconnection driven by pulsed power
Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and $P_{1/3}$ multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number $M_A \approx 1.5$ ), supersonic (Sonic Mach number $M_S \approx 4-5$ ) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio $L/\delta \approx 100$ , Lundquist number $S_L \approx 400$ ). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = $\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$ ); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信