脑边界相关巨噬细胞:感染、衰老和阿尔茨海默病的共同特征?

IF 13.1 1区 医学 Q1 IMMUNOLOGY
Sandro Da Mesquita, Rejane Rua
{"title":"脑边界相关巨噬细胞:感染、衰老和阿尔茨海默病的共同特征?","authors":"Sandro Da Mesquita, Rejane Rua","doi":"10.1016/j.it.2024.03.007","DOIUrl":null,"url":null,"abstract":"<p>Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain’s perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer’s disease (AD).</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":"40 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain border-associated macrophages: common denominators in infection, aging, and Alzheimer’s disease?\",\"authors\":\"Sandro Da Mesquita, Rejane Rua\",\"doi\":\"10.1016/j.it.2024.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain’s perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer’s disease (AD).</p>\",\"PeriodicalId\":54412,\"journal\":{\"name\":\"Trends in Immunology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.it.2024.03.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.it.2024.03.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的脑边界相关巨噬细胞(BAMs)具有支持重要特性和过程的战略地位:例如,脑血管周围细胞外基质的组成和脑脊液通过甘液通路的流动。BAMs 还能有效限制感染性微生物向大脑扩散。然而,在抗感染的过程中,BAMs 会维持长期的转录组变化,并可能被炎性单核细胞取代,从而可能导致其有益的平衡功能逐渐丧失。我们假设,通过加速 BAMs 的退化,多次感染可能与大脑加速衰老和神经退行性疾病的发展有关。我们的观点得到了最近一些研究的支持,这些研究表明,使老化的 BAMs 恢复活力,并在感染期间抵消其有害的炎症特征,可能有望治疗与衰老相关的神经系统疾病,包括阿尔茨海默病(AD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain border-associated macrophages: common denominators in infection, aging, and Alzheimer’s disease?

Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain’s perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer’s disease (AD).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Immunology
Trends in Immunology 医学-免疫学
CiteScore
25.10
自引率
0.60%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Trends in Immunology serves as a vital platform for tracking advancements across various areas of immunology, offering concise reviews and hypothesis-driven viewpoints in each issue. With additional sections providing comprehensive coverage, the journal offers a holistic view of immunology. This broad perspective makes it an invaluable resource for researchers, educators, and students, facilitating the connection between basic and clinical immunology. Recognized as one of the top monthly review journals in its field, Trends in Immunology is highly regarded by the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信