Meysam Moghadasi, Ali Nejati Kalateh, Mohammad Rezaie, Yaser Dehban
{"title":"分析和比较重力数据三维反演中确定正则化参数的自动方法","authors":"Meysam Moghadasi, Ali Nejati Kalateh, Mohammad Rezaie, Yaser Dehban","doi":"10.1007/s11600-023-01135-z","DOIUrl":null,"url":null,"abstract":"<div><p>The processing of potential field datasets requires many steps; one of them is the inverse modeling of potential field data. Using a measurement dataset, the purpose is to evaluate the physical and geometric properties of an unidentified model in the subsurface. Because of the ill-posedness of the inverse problem, the determination of an acceptable solution requires the imposition of a regularization term to stabilize the inversion process. We also need a regularization parameter that determines the comparative weights of the stabilization and data fit terms. This work offers an evaluation of automated strategies for the estimation of the regularization parameter for underdetermined linear inverse problems. We look at the methods of generalized cross validation, active constraint balancing (ACB), the discrepancy principle, and the unbiased predictive risk estimator. It has been shown that the ACB technique is superior by applying the algorithms to both synthetic data and field data, which produces density models that are representative of real structures and demonstrate the method’s supremacy. Data acquired over the chromite deposit in Camaguey, Cuba, are utilized to corroborate the procedures for the inversion of experimental data. The findings gathered from the three-dimensional inversion of gravity data from this region demonstrate that the ACB approach gives appropriate estimations of anomalous density structures and depth resolution inside the subsurface.</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"72 6","pages":"4169 - 4182"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis and comparison of automated methods for determining the regularization parameter in the three-dimensional inversion of gravity data\",\"authors\":\"Meysam Moghadasi, Ali Nejati Kalateh, Mohammad Rezaie, Yaser Dehban\",\"doi\":\"10.1007/s11600-023-01135-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The processing of potential field datasets requires many steps; one of them is the inverse modeling of potential field data. Using a measurement dataset, the purpose is to evaluate the physical and geometric properties of an unidentified model in the subsurface. Because of the ill-posedness of the inverse problem, the determination of an acceptable solution requires the imposition of a regularization term to stabilize the inversion process. We also need a regularization parameter that determines the comparative weights of the stabilization and data fit terms. This work offers an evaluation of automated strategies for the estimation of the regularization parameter for underdetermined linear inverse problems. We look at the methods of generalized cross validation, active constraint balancing (ACB), the discrepancy principle, and the unbiased predictive risk estimator. It has been shown that the ACB technique is superior by applying the algorithms to both synthetic data and field data, which produces density models that are representative of real structures and demonstrate the method’s supremacy. Data acquired over the chromite deposit in Camaguey, Cuba, are utilized to corroborate the procedures for the inversion of experimental data. The findings gathered from the three-dimensional inversion of gravity data from this region demonstrate that the ACB approach gives appropriate estimations of anomalous density structures and depth resolution inside the subsurface.</p></div>\",\"PeriodicalId\":6988,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"72 6\",\"pages\":\"4169 - 4182\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11600-023-01135-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-023-01135-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analysis and comparison of automated methods for determining the regularization parameter in the three-dimensional inversion of gravity data
The processing of potential field datasets requires many steps; one of them is the inverse modeling of potential field data. Using a measurement dataset, the purpose is to evaluate the physical and geometric properties of an unidentified model in the subsurface. Because of the ill-posedness of the inverse problem, the determination of an acceptable solution requires the imposition of a regularization term to stabilize the inversion process. We also need a regularization parameter that determines the comparative weights of the stabilization and data fit terms. This work offers an evaluation of automated strategies for the estimation of the regularization parameter for underdetermined linear inverse problems. We look at the methods of generalized cross validation, active constraint balancing (ACB), the discrepancy principle, and the unbiased predictive risk estimator. It has been shown that the ACB technique is superior by applying the algorithms to both synthetic data and field data, which produces density models that are representative of real structures and demonstrate the method’s supremacy. Data acquired over the chromite deposit in Camaguey, Cuba, are utilized to corroborate the procedures for the inversion of experimental data. The findings gathered from the three-dimensional inversion of gravity data from this region demonstrate that the ACB approach gives appropriate estimations of anomalous density structures and depth resolution inside the subsurface.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.