泡沫敷料和微动力真空敷料通过激活 PI3K/AKT/mTOR 通路促进大鼠糖尿病足溃疡伤口愈合

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Cunren Chen, Qianying Ou, Kaining Chen, Changli Liang, Xiaocui Zeng, Danhong Lin, Lu Lin
{"title":"泡沫敷料和微动力真空敷料通过激活 PI3K/AKT/mTOR 通路促进大鼠糖尿病足溃疡伤口愈合","authors":"Cunren Chen, Qianying Ou, Kaining Chen, Changli Liang, Xiaocui Zeng, Danhong Lin, Lu Lin","doi":"10.1177/08853282241248780","DOIUrl":null,"url":null,"abstract":"Foam dressing (FD) and micropower vacuum dressing (MVD) have been applied in the treatment of diabetic foot ulcer (DFU). However, research about the mode of action on the efficacy of the two dressings is extremely rare. This study proposed to explore the mechanism involved in diabetic wound healing under FD or MVD treatment. Macroscopical study was performed to evaluate the effectiveness of FD and MVD on wound healing in a rat model of DFU. Morphological analysis in the wound skin tissue was conducted by hematoxylin and eosin staining. Meanwhile, inflammatory cytokines in serum were measured by enzyme linked immunosorbent assay. The protein expression of phosphatidylinositol 3 kinase, protein kinase B and mammalian target of rapamycin (PI3K/AKT/mTOR) and their phosphorylation levels were determined by western blotting. We found that wound healing in rats with DFU was enhanced with the application of FD and MVD. The therapeutic efficacy of FD was superior to MVD. Compared with diabetic foot group, the concentrations of inflammatory cytokines, tumor necrosis factor alpha, interleukin-1β and interleukin-6, were significantly down-regulated. Besides, the phosphorylation levels of PI3K, AKT and mTOR were up-regulated under FD or MVD treatment. We demonstrated that the treatment of FD and MVD effectively promoted the wound skin healing through activating the PI3K/AKT/mTOR pathway. Our research may provide a new idea for exploring the mode of action of dressing application in healing of DFU.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"38 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foam dressing and micropower vacuum dressing promote diabetic foot ulcer wound healing by activating the PI3K/AKT/mTOR pathway in rats\",\"authors\":\"Cunren Chen, Qianying Ou, Kaining Chen, Changli Liang, Xiaocui Zeng, Danhong Lin, Lu Lin\",\"doi\":\"10.1177/08853282241248780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foam dressing (FD) and micropower vacuum dressing (MVD) have been applied in the treatment of diabetic foot ulcer (DFU). However, research about the mode of action on the efficacy of the two dressings is extremely rare. This study proposed to explore the mechanism involved in diabetic wound healing under FD or MVD treatment. Macroscopical study was performed to evaluate the effectiveness of FD and MVD on wound healing in a rat model of DFU. Morphological analysis in the wound skin tissue was conducted by hematoxylin and eosin staining. Meanwhile, inflammatory cytokines in serum were measured by enzyme linked immunosorbent assay. The protein expression of phosphatidylinositol 3 kinase, protein kinase B and mammalian target of rapamycin (PI3K/AKT/mTOR) and their phosphorylation levels were determined by western blotting. We found that wound healing in rats with DFU was enhanced with the application of FD and MVD. The therapeutic efficacy of FD was superior to MVD. Compared with diabetic foot group, the concentrations of inflammatory cytokines, tumor necrosis factor alpha, interleukin-1β and interleukin-6, were significantly down-regulated. Besides, the phosphorylation levels of PI3K, AKT and mTOR were up-regulated under FD or MVD treatment. We demonstrated that the treatment of FD and MVD effectively promoted the wound skin healing through activating the PI3K/AKT/mTOR pathway. Our research may provide a new idea for exploring the mode of action of dressing application in healing of DFU.\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241248780\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241248780","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

泡沫敷料和微动力真空敷料已被用于治疗糖尿病足溃疡。然而,有关这两种敷料疗效的作用模式的研究却极为罕见。本研究拟探讨在 FD 或 MVD 治疗下糖尿病伤口愈合的相关机制。这项宏观研究旨在评估 FD 和 MVD 对 DFU 大鼠模型伤口愈合的效果。通过苏木精和伊红染色对伤口皮肤组织进行形态学分析。同时,用酶联免疫吸附试验测定了血清中的炎症细胞因子。蛋白印迹法测定了磷脂酰肌醇 3 激酶、蛋白激酶 B 和哺乳动物雷帕霉素靶标(PI3K/AKT/mTOR)的蛋白表达及其磷酸化水平。我们发现,应用 FD 和 MVD 可促进 DFU 大鼠的伤口愈合。FD 的疗效优于 MVD。与糖尿病足组相比,炎症细胞因子、肿瘤坏死因子α、白细胞介素-1β和白细胞介素-6的浓度明显下调。此外,在 FD 或 MVD 治疗下,PI3K、AKT 和 mTOR 的磷酸化水平上调。我们的研究表明,FD 和 MVD 可通过激活 PI3K/AKT/mTOR 通路有效促进伤口皮肤愈合。我们的研究为探索敷料在 DFU 愈合中的作用模式提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foam dressing and micropower vacuum dressing promote diabetic foot ulcer wound healing by activating the PI3K/AKT/mTOR pathway in rats
Foam dressing (FD) and micropower vacuum dressing (MVD) have been applied in the treatment of diabetic foot ulcer (DFU). However, research about the mode of action on the efficacy of the two dressings is extremely rare. This study proposed to explore the mechanism involved in diabetic wound healing under FD or MVD treatment. Macroscopical study was performed to evaluate the effectiveness of FD and MVD on wound healing in a rat model of DFU. Morphological analysis in the wound skin tissue was conducted by hematoxylin and eosin staining. Meanwhile, inflammatory cytokines in serum were measured by enzyme linked immunosorbent assay. The protein expression of phosphatidylinositol 3 kinase, protein kinase B and mammalian target of rapamycin (PI3K/AKT/mTOR) and their phosphorylation levels were determined by western blotting. We found that wound healing in rats with DFU was enhanced with the application of FD and MVD. The therapeutic efficacy of FD was superior to MVD. Compared with diabetic foot group, the concentrations of inflammatory cytokines, tumor necrosis factor alpha, interleukin-1β and interleukin-6, were significantly down-regulated. Besides, the phosphorylation levels of PI3K, AKT and mTOR were up-regulated under FD or MVD treatment. We demonstrated that the treatment of FD and MVD effectively promoted the wound skin healing through activating the PI3K/AKT/mTOR pathway. Our research may provide a new idea for exploring the mode of action of dressing application in healing of DFU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信