{"title":"超级电容器的自放电。第一部分:康威诊断法","authors":"Deeksha Nimmakayala, Shaswat Srivastava, Sanjeev Kumar","doi":"10.1002/wene.515","DOIUrl":null,"url":null,"abstract":"Supercapacitors have emerged as drivers for the advancement of green energy technologies in energy storage systems and energy‐efficient devices. Their ability to rapidly acquire and deliver charge at high current densities and long cycle life is key. However, their high self‐discharge rates prevent their potential use in a wide range of applications, especially when utilizing commonly available activated carbon electrodes. Addressing this bottleneck is hindered by the lack of a comprehensive understanding of the self‐discharge processes. In this article, we provide a concise overview of various types of supercapacitors, followed by an exploration of self‐discharge phenomena within electrochemical systems. Recognizing the limited understanding at a molecular level, this article focuses on characterizing self‐discharge through the nature of the gradual decline in cell potential. We then survey the use of diagnostic methods in the literature to elucidate one or more controlling mechanisms operating during self‐discharge, facilitating a rational search for mitigation. We conclude by emphasizing the need for caution when interpreting controlling mechanisms solely based on cell potential measurements over time.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Emerging Technologies > Energy Storage</jats:list-item> </jats:list>","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":"51 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self‐discharge in supercapacitors. Part I: Conway's diagnostics\",\"authors\":\"Deeksha Nimmakayala, Shaswat Srivastava, Sanjeev Kumar\",\"doi\":\"10.1002/wene.515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supercapacitors have emerged as drivers for the advancement of green energy technologies in energy storage systems and energy‐efficient devices. Their ability to rapidly acquire and deliver charge at high current densities and long cycle life is key. However, their high self‐discharge rates prevent their potential use in a wide range of applications, especially when utilizing commonly available activated carbon electrodes. Addressing this bottleneck is hindered by the lack of a comprehensive understanding of the self‐discharge processes. In this article, we provide a concise overview of various types of supercapacitors, followed by an exploration of self‐discharge phenomena within electrochemical systems. Recognizing the limited understanding at a molecular level, this article focuses on characterizing self‐discharge through the nature of the gradual decline in cell potential. We then survey the use of diagnostic methods in the literature to elucidate one or more controlling mechanisms operating during self‐discharge, facilitating a rational search for mitigation. We conclude by emphasizing the need for caution when interpreting controlling mechanisms solely based on cell potential measurements over time.This article is categorized under:<jats:list list-type=\\\"simple\\\"> <jats:list-item>Emerging Technologies > Energy Storage</jats:list-item> </jats:list>\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.515\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.515","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Self‐discharge in supercapacitors. Part I: Conway's diagnostics
Supercapacitors have emerged as drivers for the advancement of green energy technologies in energy storage systems and energy‐efficient devices. Their ability to rapidly acquire and deliver charge at high current densities and long cycle life is key. However, their high self‐discharge rates prevent their potential use in a wide range of applications, especially when utilizing commonly available activated carbon electrodes. Addressing this bottleneck is hindered by the lack of a comprehensive understanding of the self‐discharge processes. In this article, we provide a concise overview of various types of supercapacitors, followed by an exploration of self‐discharge phenomena within electrochemical systems. Recognizing the limited understanding at a molecular level, this article focuses on characterizing self‐discharge through the nature of the gradual decline in cell potential. We then survey the use of diagnostic methods in the literature to elucidate one or more controlling mechanisms operating during self‐discharge, facilitating a rational search for mitigation. We conclude by emphasizing the need for caution when interpreting controlling mechanisms solely based on cell potential measurements over time.This article is categorized under:Emerging Technologies > Energy Storage
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.