{"title":"从量子回归中构建密度预测:宏观金融动态的多模态性","authors":"James Mitchell, Aubrey Poon, Dan Zhu","doi":"10.1002/jae.3049","DOIUrl":null,"url":null,"abstract":"<p>Quantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two-step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the “data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in the United States demonstrate the flexibility of the nonparametric approach when constructing density forecasts from both frequentist and Bayesian quantile regressions. They identify its ability to unmask deviations from symmetrical and unimodal densities. The dominant macroeconomic narrative becomes one of the evolution, over the business cycle, of multimodalities rather than asymmetries in the predictive distribution of GDP growth when conditioned on financial conditions.</p>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.3049","citationCount":"0","resultStr":"{\"title\":\"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics\",\"authors\":\"James Mitchell, Aubrey Poon, Dan Zhu\",\"doi\":\"10.1002/jae.3049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two-step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the “data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in the United States demonstrate the flexibility of the nonparametric approach when constructing density forecasts from both frequentist and Bayesian quantile regressions. They identify its ability to unmask deviations from symmetrical and unimodal densities. The dominant macroeconomic narrative becomes one of the evolution, over the business cycle, of multimodalities rather than asymmetries in the predictive distribution of GDP growth when conditioned on financial conditions.</p>\",\"PeriodicalId\":48363,\"journal\":{\"name\":\"Journal of Applied Econometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.3049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jae.3049\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.3049","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要量子回归方法越来越多地用于预测宏观经济结果的尾部风险和不确定性。本文重新考虑了如何从量化回归中构建预测密度。我们比较了将特定参数密度拟合到量化预测中的流行两步法和让 "数据说话 "的非参数替代法。模拟证据和重新审视美国 GDP 增长不确定性的应用表明,非参数方法在从频数主义和贝叶斯量化回归中构建密度预测时具有灵活性。他们确定了非参数方法揭示对称和单模态密度偏差的能力。在商业周期中,以金融条件为条件的国内生产总值增长预测分布中的多模态而非不对称性的演变成为宏观经济的主要论述。
Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics
Quantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two-step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the “data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in the United States demonstrate the flexibility of the nonparametric approach when constructing density forecasts from both frequentist and Bayesian quantile regressions. They identify its ability to unmask deviations from symmetrical and unimodal densities. The dominant macroeconomic narrative becomes one of the evolution, over the business cycle, of multimodalities rather than asymmetries in the predictive distribution of GDP growth when conditioned on financial conditions.
期刊介绍:
The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.