基于体外酶法、硅学 ADME 和分子对接分析鉴定新型双吲哚含三嗪-噻唑杂环衍生物作为有前景的脲酶抑制剂

Shoaib Khan, Rafaqat Hussain, Yousaf Khan, Tayyiaba Iqbal, Saeed Anwar, Tariq Aziz, Metab Alharbi
{"title":"基于体外酶法、硅学 ADME 和分子对接分析鉴定新型双吲哚含三嗪-噻唑杂环衍生物作为有前景的脲酶抑制剂","authors":"Shoaib Khan, Rafaqat Hussain, Yousaf Khan, Tayyiaba Iqbal, Saeed Anwar, Tariq Aziz, Metab Alharbi","doi":"10.1515/znc-2024-0061","DOIUrl":null,"url":null,"abstract":"The current study details a sequence of sequential reactions for synthesizing bis-indole-based triazine bearing thiazole derivatives. Several steps were involved in the synthesis of bis-indole-based triazine bearing thiazole derivative. The synthetic reactions were monitored via thin-layer chromatography (TLC). Synthesized compounds were characterized using various spectroscopic techniques, including <jats:sup>1</jats:sup>H NMR, <jats:sup>13</jats:sup>C NMR, and HR-EIMS. The inhibitory activity against urease enzyme of these synthesized compounds was compared with that of thiourea, a standard drug (IC<jats:sub>50</jats:sub> = 9.30 ± 0.20 µM). A range of inhibitory potencies were observed for the synthesized compounds, ranging from moderate to excellent, as follows (IC<jats:sub>50</jats:sub> = 5.10 ± 0.40 µM to 29.80 ± 0.20 µM). Analyzing the structure–activity relationship (SAR) provided insight into the results, showing that different substituents had different effects on aromatic rings. Several compounds displayed outstanding inhibitory properties (among those tested were 1, 2, 4, 5, and 6 with IC<jats:sub>50</jats:sub> = 6.30 ± 0.80, 5.10 ± 0.40, 5.90 ± 0.50, 8.20 ± 0.10, 8.90 ± 0.60 µM, respectively). Anti-urease evaluation of all the synthesized derivatives was conducted in which the selected compounds have shown remarkable potency compared with the standard drug thiourea (IC<jats:sub>50</jats:sub> = 9.30 ± 0.20 µM). Molecular docking analysis was carried out for investigating the better binding sites and distance of the derivatives. Moreover, the drug-like properties were explored by the ADME attributes of the synthesized analogs.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro enzymatic, in silico ADME and molecular docking based analysis for the identification of novel bis-indole containing triazine–thiazole hybrids derivatives as promising urease inhibitors\",\"authors\":\"Shoaib Khan, Rafaqat Hussain, Yousaf Khan, Tayyiaba Iqbal, Saeed Anwar, Tariq Aziz, Metab Alharbi\",\"doi\":\"10.1515/znc-2024-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study details a sequence of sequential reactions for synthesizing bis-indole-based triazine bearing thiazole derivatives. Several steps were involved in the synthesis of bis-indole-based triazine bearing thiazole derivative. The synthetic reactions were monitored via thin-layer chromatography (TLC). Synthesized compounds were characterized using various spectroscopic techniques, including <jats:sup>1</jats:sup>H NMR, <jats:sup>13</jats:sup>C NMR, and HR-EIMS. The inhibitory activity against urease enzyme of these synthesized compounds was compared with that of thiourea, a standard drug (IC<jats:sub>50</jats:sub> = 9.30 ± 0.20 µM). A range of inhibitory potencies were observed for the synthesized compounds, ranging from moderate to excellent, as follows (IC<jats:sub>50</jats:sub> = 5.10 ± 0.40 µM to 29.80 ± 0.20 µM). Analyzing the structure–activity relationship (SAR) provided insight into the results, showing that different substituents had different effects on aromatic rings. Several compounds displayed outstanding inhibitory properties (among those tested were 1, 2, 4, 5, and 6 with IC<jats:sub>50</jats:sub> = 6.30 ± 0.80, 5.10 ± 0.40, 5.90 ± 0.50, 8.20 ± 0.10, 8.90 ± 0.60 µM, respectively). Anti-urease evaluation of all the synthesized derivatives was conducted in which the selected compounds have shown remarkable potency compared with the standard drug thiourea (IC<jats:sub>50</jats:sub> = 9.30 ± 0.20 µM). Molecular docking analysis was carried out for investigating the better binding sites and distance of the derivatives. Moreover, the drug-like properties were explored by the ADME attributes of the synthesized analogs.\",\"PeriodicalId\":23894,\"journal\":{\"name\":\"Zeitschrift für Naturforschung C\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2024-0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2024-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究详细介绍了合成双吲哚基三嗪含噻唑衍生物的一系列顺序反应。合成含噻唑衍生物的双吲哚基三嗪涉及多个步骤。合成反应通过薄层色谱法(TLC)进行监控。利用各种光谱技术,包括 1H NMR、13C NMR 和 HR-EIMS 对合成化合物进行了表征。将这些合成化合物对脲酶的抑制活性与标准药物硫脲(IC50 = 9.30 ± 0.20 µM)进行了比较。合成化合物的抑制效力从中等到极佳不等,具体如下(IC50 = 5.10 ± 0.40 µM 至 29.80 ± 0.20 µM)。通过分析结构-活性关系(SAR)可以深入了解结果,结果表明不同的取代基对芳香环有不同的影响。有几个化合物显示出突出的抑制特性(其中 1、2、4、5 和 6 的 IC50 分别为 6.30 ± 0.80、5.10 ± 0.40、5.90 ± 0.50、8.20 ± 0.10 和 8.90 ± 0.60 µM)。对所有合成的衍生物进行了抗尿毒症评估,与标准药物硫脲(IC50 = 9.30 ± 0.20 µM)相比,所选化合物显示出显著的效力。为了研究这些衍生物更好的结合位点和距离,还进行了分子对接分析。此外,还通过合成的类似物的 ADME 属性探讨了它们的类药物特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitro enzymatic, in silico ADME and molecular docking based analysis for the identification of novel bis-indole containing triazine–thiazole hybrids derivatives as promising urease inhibitors
The current study details a sequence of sequential reactions for synthesizing bis-indole-based triazine bearing thiazole derivatives. Several steps were involved in the synthesis of bis-indole-based triazine bearing thiazole derivative. The synthetic reactions were monitored via thin-layer chromatography (TLC). Synthesized compounds were characterized using various spectroscopic techniques, including 1H NMR, 13C NMR, and HR-EIMS. The inhibitory activity against urease enzyme of these synthesized compounds was compared with that of thiourea, a standard drug (IC50 = 9.30 ± 0.20 µM). A range of inhibitory potencies were observed for the synthesized compounds, ranging from moderate to excellent, as follows (IC50 = 5.10 ± 0.40 µM to 29.80 ± 0.20 µM). Analyzing the structure–activity relationship (SAR) provided insight into the results, showing that different substituents had different effects on aromatic rings. Several compounds displayed outstanding inhibitory properties (among those tested were 1, 2, 4, 5, and 6 with IC50 = 6.30 ± 0.80, 5.10 ± 0.40, 5.90 ± 0.50, 8.20 ± 0.10, 8.90 ± 0.60 µM, respectively). Anti-urease evaluation of all the synthesized derivatives was conducted in which the selected compounds have shown remarkable potency compared with the standard drug thiourea (IC50 = 9.30 ± 0.20 µM). Molecular docking analysis was carried out for investigating the better binding sites and distance of the derivatives. Moreover, the drug-like properties were explored by the ADME attributes of the synthesized analogs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信