Mohammad Rezasefat, Yaser Mostafavi Delijani, James D. Hogan, Marco Giglio, Andrea Manes
{"title":"简单投影法:在复合材料有限元模拟中估算特征元素长度的新型算法","authors":"Mohammad Rezasefat, Yaser Mostafavi Delijani, James D. Hogan, Marco Giglio, Andrea Manes","doi":"10.1007/s10704-024-00778-3","DOIUrl":null,"url":null,"abstract":"<div><p>Mesh size dependency caused by strain localization is an ongoing problem in numerical simulations using the finite element method. In order to solve this problem, the concept of including the characteristic element length for regularization is used in the literature. The estimation of the characteristic element length is not a straightforward task since normally the characteristic element length differs from one element to another in the simulation and depends not only on element geometry but also on fracture plane orientation and material orientation. In this paper, an innovative method is proposed to estimate the characteristic element length which works on the orthogonal projection of elements on the fracture plane. The method is implemented in Abaqus/Explicit finite element solver and is verified using simple and more complex load cases such as tensile specimens, open hole specimens, and low-velocity impact. A good correlation between the numerical and experimental results in all of the studied cases was achieved and the proposed method proved to be effective in reducing mesh sensitivity. The use of the volumetric method from the literature for the simulation of open-hole tensile specimens led to more than 25% increase in the estimation of specimen strength while similar values of strength for different element aspect ratios were achieved with the proposed method.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"309 - 331"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple projection method: a novel algorithm for estimation of characteristic element length in finite element simulations of composites\",\"authors\":\"Mohammad Rezasefat, Yaser Mostafavi Delijani, James D. Hogan, Marco Giglio, Andrea Manes\",\"doi\":\"10.1007/s10704-024-00778-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesh size dependency caused by strain localization is an ongoing problem in numerical simulations using the finite element method. In order to solve this problem, the concept of including the characteristic element length for regularization is used in the literature. The estimation of the characteristic element length is not a straightforward task since normally the characteristic element length differs from one element to another in the simulation and depends not only on element geometry but also on fracture plane orientation and material orientation. In this paper, an innovative method is proposed to estimate the characteristic element length which works on the orthogonal projection of elements on the fracture plane. The method is implemented in Abaqus/Explicit finite element solver and is verified using simple and more complex load cases such as tensile specimens, open hole specimens, and low-velocity impact. A good correlation between the numerical and experimental results in all of the studied cases was achieved and the proposed method proved to be effective in reducing mesh sensitivity. The use of the volumetric method from the literature for the simulation of open-hole tensile specimens led to more than 25% increase in the estimation of specimen strength while similar values of strength for different element aspect ratios were achieved with the proposed method.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"246 2-3\",\"pages\":\"309 - 331\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-024-00778-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00778-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simple projection method: a novel algorithm for estimation of characteristic element length in finite element simulations of composites
Mesh size dependency caused by strain localization is an ongoing problem in numerical simulations using the finite element method. In order to solve this problem, the concept of including the characteristic element length for regularization is used in the literature. The estimation of the characteristic element length is not a straightforward task since normally the characteristic element length differs from one element to another in the simulation and depends not only on element geometry but also on fracture plane orientation and material orientation. In this paper, an innovative method is proposed to estimate the characteristic element length which works on the orthogonal projection of elements on the fracture plane. The method is implemented in Abaqus/Explicit finite element solver and is verified using simple and more complex load cases such as tensile specimens, open hole specimens, and low-velocity impact. A good correlation between the numerical and experimental results in all of the studied cases was achieved and the proposed method proved to be effective in reducing mesh sensitivity. The use of the volumetric method from the literature for the simulation of open-hole tensile specimens led to more than 25% increase in the estimation of specimen strength while similar values of strength for different element aspect ratios were achieved with the proposed method.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.