Byung Ha Kang, Hyun Jun Park, Sung Hee Lee, Yeon Kyu Choi, Myoung Ok Lee, Sung Won Han
{"title":"利用轻量级 Wave-U-Net 增强车内环境噪声语音效果","authors":"Byung Ha Kang, Hyun Jun Park, Sung Hee Lee, Yeon Kyu Choi, Myoung Ok Lee, Sung Won Han","doi":"10.1007/s12239-024-00078-8","DOIUrl":null,"url":null,"abstract":"<p>With the rapid advancement of AI technology, speech recognition has also advanced quickly. In recent years, speech-related technologies have been widely implemented in the automotive industry. However, in-vehicle environment noise inhibits the recognition rate, resulting in poor speech recognition performance. Numerous speech enhancement methods have been proposed to mitigate this performance degradation. Filter-based methodologies have been used to remove existing vehicle environment noise; however, they remove only limited noise. In addition, there is the constraint that there are limits to the size of models that can be mounted inside a vehicle. Therefore, making the model lighter while increasing speech quality in a vehicle environment is an essential factor. This study proposes a Wave-U-Net with a depthwise-separable convolution to overcome these limitations. We built various convolutional blocks using the Wave-U-Net model as a baseline to analyze the results, and we designed the network by adding squeeze-and-excitation network to improve performance without significantly increasing the parameters. The experimental results show how much noise is lost through spectrogram visualization, and that the proposed model improves performance in eliminating noise compared with conventional methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Vehicle Environment Noise Speech Enhancement Using Lightweight Wave-U-Net\",\"authors\":\"Byung Ha Kang, Hyun Jun Park, Sung Hee Lee, Yeon Kyu Choi, Myoung Ok Lee, Sung Won Han\",\"doi\":\"10.1007/s12239-024-00078-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid advancement of AI technology, speech recognition has also advanced quickly. In recent years, speech-related technologies have been widely implemented in the automotive industry. However, in-vehicle environment noise inhibits the recognition rate, resulting in poor speech recognition performance. Numerous speech enhancement methods have been proposed to mitigate this performance degradation. Filter-based methodologies have been used to remove existing vehicle environment noise; however, they remove only limited noise. In addition, there is the constraint that there are limits to the size of models that can be mounted inside a vehicle. Therefore, making the model lighter while increasing speech quality in a vehicle environment is an essential factor. This study proposes a Wave-U-Net with a depthwise-separable convolution to overcome these limitations. We built various convolutional blocks using the Wave-U-Net model as a baseline to analyze the results, and we designed the network by adding squeeze-and-excitation network to improve performance without significantly increasing the parameters. The experimental results show how much noise is lost through spectrogram visualization, and that the proposed model improves performance in eliminating noise compared with conventional methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00078-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00078-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In-Vehicle Environment Noise Speech Enhancement Using Lightweight Wave-U-Net
With the rapid advancement of AI technology, speech recognition has also advanced quickly. In recent years, speech-related technologies have been widely implemented in the automotive industry. However, in-vehicle environment noise inhibits the recognition rate, resulting in poor speech recognition performance. Numerous speech enhancement methods have been proposed to mitigate this performance degradation. Filter-based methodologies have been used to remove existing vehicle environment noise; however, they remove only limited noise. In addition, there is the constraint that there are limits to the size of models that can be mounted inside a vehicle. Therefore, making the model lighter while increasing speech quality in a vehicle environment is an essential factor. This study proposes a Wave-U-Net with a depthwise-separable convolution to overcome these limitations. We built various convolutional blocks using the Wave-U-Net model as a baseline to analyze the results, and we designed the network by adding squeeze-and-excitation network to improve performance without significantly increasing the parameters. The experimental results show how much noise is lost through spectrogram visualization, and that the proposed model improves performance in eliminating noise compared with conventional methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.