Byung Ha Kang, Hyun Jun Park, Sung Hee Lee, Yeon Kyu Choi, Myoung Ok Lee, Sung Won Han
{"title":"利用轻量级 Wave-U-Net 增强车内环境噪声语音效果","authors":"Byung Ha Kang, Hyun Jun Park, Sung Hee Lee, Yeon Kyu Choi, Myoung Ok Lee, Sung Won Han","doi":"10.1007/s12239-024-00078-8","DOIUrl":null,"url":null,"abstract":"<p>With the rapid advancement of AI technology, speech recognition has also advanced quickly. In recent years, speech-related technologies have been widely implemented in the automotive industry. However, in-vehicle environment noise inhibits the recognition rate, resulting in poor speech recognition performance. Numerous speech enhancement methods have been proposed to mitigate this performance degradation. Filter-based methodologies have been used to remove existing vehicle environment noise; however, they remove only limited noise. In addition, there is the constraint that there are limits to the size of models that can be mounted inside a vehicle. Therefore, making the model lighter while increasing speech quality in a vehicle environment is an essential factor. This study proposes a Wave-U-Net with a depthwise-separable convolution to overcome these limitations. We built various convolutional blocks using the Wave-U-Net model as a baseline to analyze the results, and we designed the network by adding squeeze-and-excitation network to improve performance without significantly increasing the parameters. The experimental results show how much noise is lost through spectrogram visualization, and that the proposed model improves performance in eliminating noise compared with conventional methods.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"110 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Vehicle Environment Noise Speech Enhancement Using Lightweight Wave-U-Net\",\"authors\":\"Byung Ha Kang, Hyun Jun Park, Sung Hee Lee, Yeon Kyu Choi, Myoung Ok Lee, Sung Won Han\",\"doi\":\"10.1007/s12239-024-00078-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid advancement of AI technology, speech recognition has also advanced quickly. In recent years, speech-related technologies have been widely implemented in the automotive industry. However, in-vehicle environment noise inhibits the recognition rate, resulting in poor speech recognition performance. Numerous speech enhancement methods have been proposed to mitigate this performance degradation. Filter-based methodologies have been used to remove existing vehicle environment noise; however, they remove only limited noise. In addition, there is the constraint that there are limits to the size of models that can be mounted inside a vehicle. Therefore, making the model lighter while increasing speech quality in a vehicle environment is an essential factor. This study proposes a Wave-U-Net with a depthwise-separable convolution to overcome these limitations. We built various convolutional blocks using the Wave-U-Net model as a baseline to analyze the results, and we designed the network by adding squeeze-and-excitation network to improve performance without significantly increasing the parameters. The experimental results show how much noise is lost through spectrogram visualization, and that the proposed model improves performance in eliminating noise compared with conventional methods.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00078-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00078-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
In-Vehicle Environment Noise Speech Enhancement Using Lightweight Wave-U-Net
With the rapid advancement of AI technology, speech recognition has also advanced quickly. In recent years, speech-related technologies have been widely implemented in the automotive industry. However, in-vehicle environment noise inhibits the recognition rate, resulting in poor speech recognition performance. Numerous speech enhancement methods have been proposed to mitigate this performance degradation. Filter-based methodologies have been used to remove existing vehicle environment noise; however, they remove only limited noise. In addition, there is the constraint that there are limits to the size of models that can be mounted inside a vehicle. Therefore, making the model lighter while increasing speech quality in a vehicle environment is an essential factor. This study proposes a Wave-U-Net with a depthwise-separable convolution to overcome these limitations. We built various convolutional blocks using the Wave-U-Net model as a baseline to analyze the results, and we designed the network by adding squeeze-and-excitation network to improve performance without significantly increasing the parameters. The experimental results show how much noise is lost through spectrogram visualization, and that the proposed model improves performance in eliminating noise compared with conventional methods.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.