正色散介质中的高局域马蹄波纹子和孤子

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Zhao Zhang , Qi Guo , Yury Stepanyants
{"title":"正色散介质中的高局域马蹄波纹子和孤子","authors":"Zhao Zhang ,&nbsp;Qi Guo ,&nbsp;Yury Stepanyants","doi":"10.1016/j.wavemoti.2024.103326","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we systematically review various ripplon solutions to the Kadomtsev–Petviashvili equation with positive dispersion (KP1 equation). We show that there are mappings that allow one to transform the horseshoe solitons and curved lump chains of the KP1 equation into circular solitons of the cylindrical Korteweg–de Vries (cKdV) equation and two-dimensional solitons of the cylindrical Kadomtsev–Petviashvili (cKP) equation. Then, we present analytical solutions that describe new nonlinear highly localized ripplons of a horseshoe shape. Ripplons are two-dimensional waves with an oscillatory structure in space and a decaying character in time; they are similar to lumps but non-stationary. In the limiting case, the horseshoe ripplons reduce to solitons decaying with time and having bent fronts. Such entities can play an important role in the description of strong turbulence in plasma and other media.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"128 ","pages":"Article 103326"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165212524000568/pdfft?md5=ea15f2ee473b0130fc0611bcbd4b069e&pid=1-s2.0-S0165212524000568-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly localized horseshoe ripplons and solitons in positive dispersion media\",\"authors\":\"Zhao Zhang ,&nbsp;Qi Guo ,&nbsp;Yury Stepanyants\",\"doi\":\"10.1016/j.wavemoti.2024.103326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we systematically review various ripplon solutions to the Kadomtsev–Petviashvili equation with positive dispersion (KP1 equation). We show that there are mappings that allow one to transform the horseshoe solitons and curved lump chains of the KP1 equation into circular solitons of the cylindrical Korteweg–de Vries (cKdV) equation and two-dimensional solitons of the cylindrical Kadomtsev–Petviashvili (cKP) equation. Then, we present analytical solutions that describe new nonlinear highly localized ripplons of a horseshoe shape. Ripplons are two-dimensional waves with an oscillatory structure in space and a decaying character in time; they are similar to lumps but non-stationary. In the limiting case, the horseshoe ripplons reduce to solitons decaying with time and having bent fronts. Such entities can play an important role in the description of strong turbulence in plasma and other media.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"128 \",\"pages\":\"Article 103326\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000568/pdfft?md5=ea15f2ee473b0130fc0611bcbd4b069e&pid=1-s2.0-S0165212524000568-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000568\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000568","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们系统地回顾了具有正色散的卡多姆采夫-彼得维亚什维利方程(KP1方程)的各种涟漪解。我们发现有一些映射可以将 KP1 方程的马蹄形孤子和曲线块链转化为圆柱 Korteweg-de Vries (cKdV) 方程的圆孤子和圆柱 Kadomtsev-Petviashvili (cKP) 方程的二维孤子。然后,我们提出了描述新的非线性高度局部化马蹄形波纹的解析解。波纹是一种二维波,在空间上具有振荡结构,在时间上具有衰减特性;它们与块状波类似,但不是稳态的。在极限情况下,马蹄形波纹子简化为随时间衰减并具有弯曲前沿的孤子。这种实体在描述等离子体和其他介质中的强湍流时可以发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly localized horseshoe ripplons and solitons in positive dispersion media

In this study, we systematically review various ripplon solutions to the Kadomtsev–Petviashvili equation with positive dispersion (KP1 equation). We show that there are mappings that allow one to transform the horseshoe solitons and curved lump chains of the KP1 equation into circular solitons of the cylindrical Korteweg–de Vries (cKdV) equation and two-dimensional solitons of the cylindrical Kadomtsev–Petviashvili (cKP) equation. Then, we present analytical solutions that describe new nonlinear highly localized ripplons of a horseshoe shape. Ripplons are two-dimensional waves with an oscillatory structure in space and a decaying character in time; they are similar to lumps but non-stationary. In the limiting case, the horseshoe ripplons reduce to solitons decaying with time and having bent fronts. Such entities can play an important role in the description of strong turbulence in plasma and other media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信