Jéssica Teodoro-Paulo, Jacques A. Deere, João Valeriano-Santos, Steven Charlesworth, Alison B. Duncan, Merijn R. Kant, Juan M. Alba
{"title":"气温升高有利于抑制防御的食草动物","authors":"Jéssica Teodoro-Paulo, Jacques A. Deere, João Valeriano-Santos, Steven Charlesworth, Alison B. Duncan, Merijn R. Kant, Juan M. Alba","doi":"10.1007/s10340-024-01781-2","DOIUrl":null,"url":null,"abstract":"<p>Rising temperatures due to climate change are predicted to accelerate the life cycle of arthropod herbivores thereby exacerbating pest formation. Notorious pests like spider mites thrive in areas with high temperatures (32–35 °C), and it is predicted that the size and number of such areas will expand in the coming decades. Higher temperatures can directly accelerate population growth, but also indirectly affect them through changes in the plant's defensive mechanisms. Spider mites have been shown to adapt to plant defences, with natural selection favouring defence-suppressing traits. However, it is not known to what extent suppression is affected by rising temperatures and how this might tie into the rate of adaptation and pest damage. In this study, we investigated the effect of two temperatures (25 °C and 32 °C), on the spider mite–tomato interaction, predicting the influence of rising temperatures on favouring defence-adapted mites. We found that all mite strains caused more plant damage at 32 °C, but temperature did not affect the overall patterns of induction and suppression of defence genes. Although fecundity was higher for all strains at 32 °C, juvenile and adult survival was lower, especially for inducer mites. With these data, we parametrized population models for the two strains over three months, indicating that suppressor mites might displace inducers at the higher temperature, either when it is constant or in the form of heat waves. Our models predict that in areas with higher temperatures, defence-suppressing mites are favoured, which will accelerate and consequently spur pest formation.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"200 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rising temperatures favour defence-suppressing herbivores\",\"authors\":\"Jéssica Teodoro-Paulo, Jacques A. Deere, João Valeriano-Santos, Steven Charlesworth, Alison B. Duncan, Merijn R. Kant, Juan M. Alba\",\"doi\":\"10.1007/s10340-024-01781-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rising temperatures due to climate change are predicted to accelerate the life cycle of arthropod herbivores thereby exacerbating pest formation. Notorious pests like spider mites thrive in areas with high temperatures (32–35 °C), and it is predicted that the size and number of such areas will expand in the coming decades. Higher temperatures can directly accelerate population growth, but also indirectly affect them through changes in the plant's defensive mechanisms. Spider mites have been shown to adapt to plant defences, with natural selection favouring defence-suppressing traits. However, it is not known to what extent suppression is affected by rising temperatures and how this might tie into the rate of adaptation and pest damage. In this study, we investigated the effect of two temperatures (25 °C and 32 °C), on the spider mite–tomato interaction, predicting the influence of rising temperatures on favouring defence-adapted mites. We found that all mite strains caused more plant damage at 32 °C, but temperature did not affect the overall patterns of induction and suppression of defence genes. Although fecundity was higher for all strains at 32 °C, juvenile and adult survival was lower, especially for inducer mites. With these data, we parametrized population models for the two strains over three months, indicating that suppressor mites might displace inducers at the higher temperature, either when it is constant or in the form of heat waves. Our models predict that in areas with higher temperatures, defence-suppressing mites are favoured, which will accelerate and consequently spur pest formation.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"200 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01781-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01781-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Rising temperatures due to climate change are predicted to accelerate the life cycle of arthropod herbivores thereby exacerbating pest formation. Notorious pests like spider mites thrive in areas with high temperatures (32–35 °C), and it is predicted that the size and number of such areas will expand in the coming decades. Higher temperatures can directly accelerate population growth, but also indirectly affect them through changes in the plant's defensive mechanisms. Spider mites have been shown to adapt to plant defences, with natural selection favouring defence-suppressing traits. However, it is not known to what extent suppression is affected by rising temperatures and how this might tie into the rate of adaptation and pest damage. In this study, we investigated the effect of two temperatures (25 °C and 32 °C), on the spider mite–tomato interaction, predicting the influence of rising temperatures on favouring defence-adapted mites. We found that all mite strains caused more plant damage at 32 °C, but temperature did not affect the overall patterns of induction and suppression of defence genes. Although fecundity was higher for all strains at 32 °C, juvenile and adult survival was lower, especially for inducer mites. With these data, we parametrized population models for the two strains over three months, indicating that suppressor mites might displace inducers at the higher temperature, either when it is constant or in the form of heat waves. Our models predict that in areas with higher temperatures, defence-suppressing mites are favoured, which will accelerate and consequently spur pest formation.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.