对 SAC305-Bi 焊球晶间疲劳裂纹的相关性、基于 ML 的非破坏性 3D 分析

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Charlotte Cui, Fereshteh Falah Chamasemani, Priya Paulachan, Rahulkumar Sinojiya, Jördis Rosc, Michael Reisinger, Peter Imrich, Walter Hartner, Roland Brunner
{"title":"对 SAC305-Bi 焊球晶间疲劳裂纹的相关性、基于 ML 的非破坏性 3D 分析","authors":"Charlotte Cui, Fereshteh Falah Chamasemani, Priya Paulachan, Rahulkumar Sinojiya, Jördis Rosc, Michael Reisinger, Peter Imrich, Walter Hartner, Roland Brunner","doi":"10.1038/s41529-024-00456-8","DOIUrl":null,"url":null,"abstract":"Reliable connections of electrical components embody a crucial topic in the microelectronics and power semiconductor industry. This study utilises 3D non-destructive X-ray tomography and specifically developed machine learning (ML-) algorithms to statistically investigate crack initiation and propagation in SAC305-Bi solder balls upon thermal cycling on board (TCoB). We quantitatively segment fatigue cracks and flux pores from 3D X-ray tomography data utilising a multi-level ML-workflow incorporating a 3D U-Net model. The data reveals that intergranular fatigue cracking is the predominant failure mechanism during TCoB and that dynamic recrystallisation precedes crack initiation. Moreover, we find that fatigue cracks are initiated at surface notches, flux pores and printed circuit board-metallisation intrusions. The work provides important insights regarding the underlying microstructural and mechanical mechanisms for recrystallisation and cracking, uniting the aspects of big-data analysis with ML-algorithms and in-depth understanding about the underlying materials science.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00456-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Correlative, ML-based and non-destructive 3D-analysis of intergranular fatigue cracking in SAC305-Bi solder balls\",\"authors\":\"Charlotte Cui, Fereshteh Falah Chamasemani, Priya Paulachan, Rahulkumar Sinojiya, Jördis Rosc, Michael Reisinger, Peter Imrich, Walter Hartner, Roland Brunner\",\"doi\":\"10.1038/s41529-024-00456-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable connections of electrical components embody a crucial topic in the microelectronics and power semiconductor industry. This study utilises 3D non-destructive X-ray tomography and specifically developed machine learning (ML-) algorithms to statistically investigate crack initiation and propagation in SAC305-Bi solder balls upon thermal cycling on board (TCoB). We quantitatively segment fatigue cracks and flux pores from 3D X-ray tomography data utilising a multi-level ML-workflow incorporating a 3D U-Net model. The data reveals that intergranular fatigue cracking is the predominant failure mechanism during TCoB and that dynamic recrystallisation precedes crack initiation. Moreover, we find that fatigue cracks are initiated at surface notches, flux pores and printed circuit board-metallisation intrusions. The work provides important insights regarding the underlying microstructural and mechanical mechanisms for recrystallisation and cracking, uniting the aspects of big-data analysis with ML-algorithms and in-depth understanding about the underlying materials science.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00456-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00456-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00456-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电气元件的可靠连接是微电子和功率半导体行业的一个重要课题。本研究利用三维无损 X 射线断层扫描和专门开发的机器学习 (ML) 算法,对 SAC305-Bi 焊球在板上热循环 (TCoB) 时的裂纹起始和扩展进行了统计研究。我们利用结合了三维 U-Net 模型的多层次 ML 工作流程,从三维 X 射线断层扫描数据中定量分割疲劳裂纹和焊剂孔隙。数据显示,晶间疲劳裂纹是热转印过程中的主要失效机制,而动态再结晶则先于裂纹的产生。此外,我们还发现疲劳裂纹是在表面缺口、焊剂孔隙和印刷电路板金属化侵入处产生的。这项工作结合了大数据分析、ML 算法和对底层材料科学的深入理解,为再结晶和开裂的底层微结构和机械机制提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correlative, ML-based and non-destructive 3D-analysis of intergranular fatigue cracking in SAC305-Bi solder balls

Correlative, ML-based and non-destructive 3D-analysis of intergranular fatigue cracking in SAC305-Bi solder balls
Reliable connections of electrical components embody a crucial topic in the microelectronics and power semiconductor industry. This study utilises 3D non-destructive X-ray tomography and specifically developed machine learning (ML-) algorithms to statistically investigate crack initiation and propagation in SAC305-Bi solder balls upon thermal cycling on board (TCoB). We quantitatively segment fatigue cracks and flux pores from 3D X-ray tomography data utilising a multi-level ML-workflow incorporating a 3D U-Net model. The data reveals that intergranular fatigue cracking is the predominant failure mechanism during TCoB and that dynamic recrystallisation precedes crack initiation. Moreover, we find that fatigue cracks are initiated at surface notches, flux pores and printed circuit board-metallisation intrusions. The work provides important insights regarding the underlying microstructural and mechanical mechanisms for recrystallisation and cracking, uniting the aspects of big-data analysis with ML-algorithms and in-depth understanding about the underlying materials science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信