Shin Ying Foong , Rock Keey Liew , Peter Nai Yuh Yek , Yi Herng Chan , Su Shiung Lam
{"title":"通过甲壳素热解和活化生产富氮碳材料以加强废水修复的综述","authors":"Shin Ying Foong , Rock Keey Liew , Peter Nai Yuh Yek , Yi Herng Chan , Su Shiung Lam","doi":"10.1016/j.cogsc.2024.100920","DOIUrl":null,"url":null,"abstract":"<div><p>This review explores the thermal conversion of chitin, an abundant and low-cost biomaterial, into value-added chitin-biochar via pyrolysis and activation processes. Chitin-biochar exhibits desirable porosity, surface functionality, and adsorption potential, rendering it suitable for environmental applications as an eco-friendly adsorbent. The review highlights the versatility of chitin-biochar by comparing the insect-derived and crustacean-derived sources, showcasing its adaptability across different biomass feedstocks. Notably, the tailor ability of its physicochemical properties through activation, coupled with adsorption capabilities in water treatment, non-toxic nature, and biodegradability, position it as a promising material for industrial applications and circular economy integration. This review provides insights into production processes, adsorption performance, and sustainability aspects, paving the way for future research and large-scale sustainable implementation of chitin–biochar technology.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"47 ","pages":"Article 100920"},"PeriodicalIF":9.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review in production of nitrogen-enriched carbon materials via chitin pyrolysis and activation for enhanced wastewater remediation\",\"authors\":\"Shin Ying Foong , Rock Keey Liew , Peter Nai Yuh Yek , Yi Herng Chan , Su Shiung Lam\",\"doi\":\"10.1016/j.cogsc.2024.100920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review explores the thermal conversion of chitin, an abundant and low-cost biomaterial, into value-added chitin-biochar via pyrolysis and activation processes. Chitin-biochar exhibits desirable porosity, surface functionality, and adsorption potential, rendering it suitable for environmental applications as an eco-friendly adsorbent. The review highlights the versatility of chitin-biochar by comparing the insect-derived and crustacean-derived sources, showcasing its adaptability across different biomass feedstocks. Notably, the tailor ability of its physicochemical properties through activation, coupled with adsorption capabilities in water treatment, non-toxic nature, and biodegradability, position it as a promising material for industrial applications and circular economy integration. This review provides insights into production processes, adsorption performance, and sustainability aspects, paving the way for future research and large-scale sustainable implementation of chitin–biochar technology.</p></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"47 \",\"pages\":\"Article 100920\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000415\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000415","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A review in production of nitrogen-enriched carbon materials via chitin pyrolysis and activation for enhanced wastewater remediation
This review explores the thermal conversion of chitin, an abundant and low-cost biomaterial, into value-added chitin-biochar via pyrolysis and activation processes. Chitin-biochar exhibits desirable porosity, surface functionality, and adsorption potential, rendering it suitable for environmental applications as an eco-friendly adsorbent. The review highlights the versatility of chitin-biochar by comparing the insect-derived and crustacean-derived sources, showcasing its adaptability across different biomass feedstocks. Notably, the tailor ability of its physicochemical properties through activation, coupled with adsorption capabilities in water treatment, non-toxic nature, and biodegradability, position it as a promising material for industrial applications and circular economy integration. This review provides insights into production processes, adsorption performance, and sustainability aspects, paving the way for future research and large-scale sustainable implementation of chitin–biochar technology.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.