聚苯乙烯纳米塑料协同加剧了双氯芬酸对胚胎发育和成年斑马鱼健康的毒性

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karthikeyan Kandaswamy , Ajay Guru , Siva Prasad Panda , Anahas Perianaika Matharasi Antonyraj , Zulhisyam Abdul Kari , Jayant Giri , Bader O. Almutairi , Selvaraj Arokiyaraj , Guilherme Malafaia , Jesu Arockiaraj
{"title":"聚苯乙烯纳米塑料协同加剧了双氯芬酸对胚胎发育和成年斑马鱼健康的毒性","authors":"Karthikeyan Kandaswamy ,&nbsp;Ajay Guru ,&nbsp;Siva Prasad Panda ,&nbsp;Anahas Perianaika Matharasi Antonyraj ,&nbsp;Zulhisyam Abdul Kari ,&nbsp;Jayant Giri ,&nbsp;Bader O. Almutairi ,&nbsp;Selvaraj Arokiyaraj ,&nbsp;Guilherme Malafaia ,&nbsp;Jesu Arockiaraj","doi":"10.1016/j.cbpc.2024.109926","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the possible ecotoxicological effect of <em>co</em>-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (<em>Danio rerio</em>). After six days of exposure, we noticed that the co-exposure to PS-NP (100 μg/L) and DCF (at 50 and 500 μg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the <em>TNF-α</em>, <em>COX-2</em>, and <em>IL-1β</em> expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polystyrene nanoplastics synergistically exacerbate diclofenac toxicity in embryonic development and the health of adult zebrafish\",\"authors\":\"Karthikeyan Kandaswamy ,&nbsp;Ajay Guru ,&nbsp;Siva Prasad Panda ,&nbsp;Anahas Perianaika Matharasi Antonyraj ,&nbsp;Zulhisyam Abdul Kari ,&nbsp;Jayant Giri ,&nbsp;Bader O. Almutairi ,&nbsp;Selvaraj Arokiyaraj ,&nbsp;Guilherme Malafaia ,&nbsp;Jesu Arockiaraj\",\"doi\":\"10.1016/j.cbpc.2024.109926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigated the possible ecotoxicological effect of <em>co</em>-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (<em>Danio rerio</em>). After six days of exposure, we noticed that the co-exposure to PS-NP (100 μg/L) and DCF (at 50 and 500 μg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the <em>TNF-α</em>, <em>COX-2</em>, and <em>IL-1β</em> expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624000942\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624000942","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了斑马鱼(Danio rerio)共同暴露于聚苯乙烯纳米塑料(PS-NPs)和双氯芬酸(DCF)可能产生的生态毒理学效应。暴露六天后,我们注意到,与对照组相比,同时暴露于聚苯乙烯纳米塑料(100 μg/L)和双氯芬酸(50 和 500 μg/L)的斑马鱼的孵化率下降,死亡率上升。此外,我们还注意到,暴露于多种污染物的幼虫出现形态异常的频率较高,氧化应激、细胞凋亡和脂质过氧化程度增加。在成虫中,肠道中的超氧化物歧化酶和过氧化氢酶活性也受到了影响,同时暴露于多种污染物的组出现了更多的组织病理学改变。此外,共同暴露于污染物的成年斑马鱼体内 TNF-α、COX-2 和 IL-1β 的表达显著上调。基于这些发现,同时暴露于 PS-NPs 和 DCF 对斑马鱼的肠道区域产生了不利影响,支持了 PS-NPs 会协同加剧 DCF 对斑马鱼毒性的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polystyrene nanoplastics synergistically exacerbate diclofenac toxicity in embryonic development and the health of adult zebrafish

Polystyrene nanoplastics synergistically exacerbate diclofenac toxicity in embryonic development and the health of adult zebrafish

In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 μg/L) and DCF (at 50 and 500 μg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1β expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信