受生物启发设计用于日间辐射冷却的二元协同光子结构

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Zhang, Tong Wang*, Xue Mei, Hongyi Tu, Min Chen and Limin Wu*, 
{"title":"受生物启发设计用于日间辐射冷却的二元协同光子结构","authors":"Yu Zhang,&nbsp;Tong Wang*,&nbsp;Xue Mei,&nbsp;Hongyi Tu,&nbsp;Min Chen and Limin Wu*,&nbsp;","doi":"10.1021/acsphotonics.4c00057","DOIUrl":null,"url":null,"abstract":"<p >Passive daytime radiative cooling (PDRC) technology provides a promising path for combating global climate warming. Natural photonic structures with efficient radiative cooling performance exist in Saharan silver ants, enabling them to cater to extremely hot weather in the desert. However, previously reported bioinspired structured coolers are easily dampened by environmental aging and contamination, making cooling ineffective. Herein, a bioinspired binary hybrid (Bio-BH) film fabricated via drop casting and unidirectional rubbing methods is presented. The Bio-BH film possesses resonant hollow particles inside the polymer and a nano/microscale photonic structure on the surface composed of a triangular prism array and nanospheres uniformly atop the array, exhibiting high solar reflectance (0.93) and enhanced thermal emissivity (0.94). A temperature drop of ∼6.9 °C is achieved at noon under direct sunlight. Moreover, after fluoride treatment, the dual-scale rough surface endows the film with superhydrophobicity of a water contact angle (WCA) of ∼157°. Combining self-cleaning and durable capacities, this work will pave the way for long-term PDRC performance in real-world application scenarios.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"11 5","pages":"1960–1968"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Design of a Binary Synergistic Photonic Structure for Daytime Radiative Cooling\",\"authors\":\"Yu Zhang,&nbsp;Tong Wang*,&nbsp;Xue Mei,&nbsp;Hongyi Tu,&nbsp;Min Chen and Limin Wu*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.4c00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Passive daytime radiative cooling (PDRC) technology provides a promising path for combating global climate warming. Natural photonic structures with efficient radiative cooling performance exist in Saharan silver ants, enabling them to cater to extremely hot weather in the desert. However, previously reported bioinspired structured coolers are easily dampened by environmental aging and contamination, making cooling ineffective. Herein, a bioinspired binary hybrid (Bio-BH) film fabricated via drop casting and unidirectional rubbing methods is presented. The Bio-BH film possesses resonant hollow particles inside the polymer and a nano/microscale photonic structure on the surface composed of a triangular prism array and nanospheres uniformly atop the array, exhibiting high solar reflectance (0.93) and enhanced thermal emissivity (0.94). A temperature drop of ∼6.9 °C is achieved at noon under direct sunlight. Moreover, after fluoride treatment, the dual-scale rough surface endows the film with superhydrophobicity of a water contact angle (WCA) of ∼157°. Combining self-cleaning and durable capacities, this work will pave the way for long-term PDRC performance in real-world application scenarios.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"11 5\",\"pages\":\"1960–1968\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.4c00057\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c00057","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

被动式日间辐射冷却(PDRC)技术为应对全球气候变暖提供了一条大有可为的途径。撒哈拉银蚁体内存在具有高效辐射冷却性能的天然光子结构,使它们能够适应沙漠中极端炎热的天气。然而,之前报道的生物启发结构冷却器很容易受到环境老化和污染的影响,导致冷却效果不佳。本文介绍了一种通过滴铸和单向摩擦方法制造的生物启发二元混合(Bio-BH)薄膜。Bio-BH 薄膜的聚合物内部具有共振空心颗粒,表面具有纳米/微米级光子结构,该结构由三角形棱镜阵列和均匀分布在阵列顶部的纳米球组成,具有较高的太阳反射率(0.93)和较强的热发射率(0.94)。在正午阳光直射下,温度可下降 6.9 °C。此外,经过氟化处理后,双尺度粗糙表面使薄膜具有超疏水性能,水接触角(WCA)达到 ∼157°。这项工作结合了自清洁和耐久性能,将为 PDRC 在实际应用场景中的长期性能铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired Design of a Binary Synergistic Photonic Structure for Daytime Radiative Cooling

Bioinspired Design of a Binary Synergistic Photonic Structure for Daytime Radiative Cooling

Bioinspired Design of a Binary Synergistic Photonic Structure for Daytime Radiative Cooling

Passive daytime radiative cooling (PDRC) technology provides a promising path for combating global climate warming. Natural photonic structures with efficient radiative cooling performance exist in Saharan silver ants, enabling them to cater to extremely hot weather in the desert. However, previously reported bioinspired structured coolers are easily dampened by environmental aging and contamination, making cooling ineffective. Herein, a bioinspired binary hybrid (Bio-BH) film fabricated via drop casting and unidirectional rubbing methods is presented. The Bio-BH film possesses resonant hollow particles inside the polymer and a nano/microscale photonic structure on the surface composed of a triangular prism array and nanospheres uniformly atop the array, exhibiting high solar reflectance (0.93) and enhanced thermal emissivity (0.94). A temperature drop of ∼6.9 °C is achieved at noon under direct sunlight. Moreover, after fluoride treatment, the dual-scale rough surface endows the film with superhydrophobicity of a water contact angle (WCA) of ∼157°. Combining self-cleaning and durable capacities, this work will pave the way for long-term PDRC performance in real-world application scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信