基于等级的多重对比测试的样本量规划

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Anna Pöhlmann, Edgar Brunner, Frank Konietschke
{"title":"基于等级的多重对比测试的样本量规划","authors":"Anna Pöhlmann,&nbsp;Edgar Brunner,&nbsp;Frank Konietschke","doi":"10.1002/bimj.202300240","DOIUrl":null,"url":null,"abstract":"<p>Rank methods are well-established tools for comparing two or multiple (independent) groups. Statistical planning methods for the computing the required sample size(s) to detect a specific alternative with predefined power are lacking. In the present paper, we develop numerical algorithms for sample size planning of pseudo-rank-based multiple contrast tests. We discuss the treatment effects and different ways to approximate variance parameters within the estimation scheme. We further compare pairwise with global rank methods in detail. Extensive simulation studies show that the sample size estimators are accurate. A real data example illustrates the application of the methods.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300240","citationCount":"0","resultStr":"{\"title\":\"Sample size planning for rank-based multiple contrast tests\",\"authors\":\"Anna Pöhlmann,&nbsp;Edgar Brunner,&nbsp;Frank Konietschke\",\"doi\":\"10.1002/bimj.202300240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rank methods are well-established tools for comparing two or multiple (independent) groups. Statistical planning methods for the computing the required sample size(s) to detect a specific alternative with predefined power are lacking. In the present paper, we develop numerical algorithms for sample size planning of pseudo-rank-based multiple contrast tests. We discuss the treatment effects and different ways to approximate variance parameters within the estimation scheme. We further compare pairwise with global rank methods in detail. Extensive simulation studies show that the sample size estimators are accurate. A real data example illustrates the application of the methods.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300240\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300240\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300240","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

等级法是比较两个或多个(独立)群体的成熟工具。目前还缺乏计算所需样本量的统计规划方法,以检测具有预定功率的特定替代方案。在本文中,我们为基于伪秩的多重对比检验的样本量规划开发了数字算法。我们讨论了处理效应以及在估计方案中近似方差参数的不同方法。我们进一步详细比较了成对秩方法和全局秩方法。大量的模拟研究表明,样本量估计值是准确的。一个真实数据示例说明了这些方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sample size planning for rank-based multiple contrast tests

Sample size planning for rank-based multiple contrast tests

Rank methods are well-established tools for comparing two or multiple (independent) groups. Statistical planning methods for the computing the required sample size(s) to detect a specific alternative with predefined power are lacking. In the present paper, we develop numerical algorithms for sample size planning of pseudo-rank-based multiple contrast tests. We discuss the treatment effects and different ways to approximate variance parameters within the estimation scheme. We further compare pairwise with global rank methods in detail. Extensive simulation studies show that the sample size estimators are accurate. A real data example illustrates the application of the methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信