来自e+e-→强子的QCD参数和SM-高精度更新

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Stephan Narison
{"title":"来自e+e-→强子的QCD参数和SM-高精度更新","authors":"Stephan Narison","doi":"10.1016/j.nuclphysa.2024.122873","DOIUrl":null,"url":null,"abstract":"<div><p><strong>1.</strong> I report an update of my previous comparison of the theoretical value of the muon anomaly <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> with the new measurement. One finds: <span><math><mi>Δ</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>143</mn><mo>±</mo><msub><mrow><mn>42</mn></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>±</mo><msub><mrow><mn>22</mn></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msub><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> indicating about 3<em>σ</em> discrepancy between the SM predictions and experiment.</p><p><strong>2.</strong> I improve the estimate of QCD power corrections up to dimension <span><math><mi>D</mi><mo>=</mo><mn>12</mn></math></span> and provide a new estimate of the ones up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span> within the Shifman-Vainshtein-Zahkarov (SVZ) expansion by combining the ratio of the SVZ Borel/Laplace sum rules (LSR) with the Braaten-Pich and the author (BNP) <em>τ</em>-like decay moments for the <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span> vector current. The results summarized in Table 1 confirm a violation of the factorization of the four-quark condensates and the value of the gluon one <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></math></span> from some other sources. Up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span>, I do not observe any factorial nor exponential growth of the size of these power corrections.</p><p><strong>3.</strong> I use these new values of power corrections to extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the BNP lowest moment. To order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, I find within the SVZ expansion: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3081</mn><msub><mrow><mo>(</mo><mn>50</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>71</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3260</mn><msub><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1170</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1192</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.3180</mn><msub><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>99</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><mo>(</mo><mn>14</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we also obtain from the <span><math><mi>V</mi><mo>+</mo><mi>A</mi></math></span> component of <em>τ</em>-decay data: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3040</mn><msub><mrow><mo>(</mo><mn>76</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>68</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> giving: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1166</mn><mo>(</mo><mn>8</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>. The average of the two determinations from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <em>τ</em>-decay is: <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.3111</mn><mo>(</mo><mn>71</mn><mo>)</mo></math></span> which implies <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.1174</mn><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>.</p><p><strong>4.</strong> Some (eventual) contributions beyond the SVZ expansion (<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, instantons and duality violation) are discussed in Sections <span>10</span> and <span>11</span>.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1046 ","pages":"Article 122873"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QCD parameters and SM-high precision from e+e−→ Hadrons: Updated\",\"authors\":\"Stephan Narison\",\"doi\":\"10.1016/j.nuclphysa.2024.122873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>1.</strong> I report an update of my previous comparison of the theoretical value of the muon anomaly <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> with the new measurement. One finds: <span><math><mi>Δ</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>143</mn><mo>±</mo><msub><mrow><mn>42</mn></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>±</mo><msub><mrow><mn>22</mn></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msub><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> indicating about 3<em>σ</em> discrepancy between the SM predictions and experiment.</p><p><strong>2.</strong> I improve the estimate of QCD power corrections up to dimension <span><math><mi>D</mi><mo>=</mo><mn>12</mn></math></span> and provide a new estimate of the ones up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span> within the Shifman-Vainshtein-Zahkarov (SVZ) expansion by combining the ratio of the SVZ Borel/Laplace sum rules (LSR) with the Braaten-Pich and the author (BNP) <em>τ</em>-like decay moments for the <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span> vector current. The results summarized in Table 1 confirm a violation of the factorization of the four-quark condensates and the value of the gluon one <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></math></span> from some other sources. Up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span>, I do not observe any factorial nor exponential growth of the size of these power corrections.</p><p><strong>3.</strong> I use these new values of power corrections to extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the BNP lowest moment. To order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, I find within the SVZ expansion: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3081</mn><msub><mrow><mo>(</mo><mn>50</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>71</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3260</mn><msub><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1170</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1192</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.3180</mn><msub><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>99</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><mo>(</mo><mn>14</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we also obtain from the <span><math><mi>V</mi><mo>+</mo><mi>A</mi></math></span> component of <em>τ</em>-decay data: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3040</mn><msub><mrow><mo>(</mo><mn>76</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>68</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> giving: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1166</mn><mo>(</mo><mn>8</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>. The average of the two determinations from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <em>τ</em>-decay is: <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.3111</mn><mo>(</mo><mn>71</mn><mo>)</mo></math></span> which implies <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.1174</mn><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>.</p><p><strong>4.</strong> Some (eventual) contributions beyond the SVZ expansion (<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, instantons and duality violation) are discussed in Sections <span>10</span> and <span>11</span>.</p></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1046 \",\"pages\":\"Article 122873\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947424000551\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000551","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

1.我报告了我之前将μ介子异常的理论值 aμ≡12(g-2)μ 与新的测量值进行比较的最新情况。我们发现:Δaμ≡aμexp-aμth=(143±42th±22exp)×10-11表明SM预言和实验之间存在大约3σ的差异。我在 Shifman-Vainshtein-Zahkarov (SVZ)扩展中,通过将 SVZ 的 Borel/Laplace sum rules (LSR) 与 I=1 矢量电流的 Braaten-Pich and the author (BNP) τ-like decay moments 之比结合起来,改进了对 QCD 功率修正到 D=12 维的估计,并提供了对 QCD 功率修正到 D=20 维的新估计。表 1 总结的结果证实了四夸克凝聚态的因式分解和来自其他来源的胶子一〈αsG2〉值的违反。我使用这些新的幂修正值从 BNP 最低矩中提取 αs。对于 αs4 阶,我在 SVZ 扩展中发现:αs(Mτ)=0.3081(50)fit(71)αs5 [resp. 0.3260(47)fit(62)αs5] 意味着固定阶(FO)[respect. Contour Improved (CI)]PT 序列的αs(MZ)=0.1170(6)(3)evol [resp. 0.1192(6)(3)evol]。它们得出的平均值为:αs(Mτ)|SVZ=0.3180(58)fit(99)syst 和 αs(MZ)|SVZ=0.1182(14)(3)evol,其中系统误差(syst)考虑了 FO 和 CI 结果之间的差异。利用最低 BNP 矩,我们还从τ-衰变数据的 V+A 部分得到:αs(Mτ)|τ,V+A=0.3040(76)fit(68)syst,从而得到:αs(MZ)|τ,V+A=0.1166(8)(3)evol。e+e-和τ-衰变的两个测定值的平均值是:〈αs(Mτ)〉=0.3111(71),这意味着〈αs(MZ)〉=0.1174(10)(3)evol.4。 第10节和第11节讨论了SVZ扩展之外的一些(最终)贡献(1/Q2、瞬子和对偶违反)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QCD parameters and SM-high precision from e+e−→ Hadrons: Updated

1. I report an update of my previous comparison of the theoretical value of the muon anomaly aμ12(g2)μ with the new measurement. One finds: Δaμaμexpaμth=(143±42th±22exp)×1011 indicating about 3σ discrepancy between the SM predictions and experiment.

2. I improve the estimate of QCD power corrections up to dimension D=12 and provide a new estimate of the ones up to D=20 within the Shifman-Vainshtein-Zahkarov (SVZ) expansion by combining the ratio of the SVZ Borel/Laplace sum rules (LSR) with the Braaten-Pich and the author (BNP) τ-like decay moments for the I=1 vector current. The results summarized in Table 1 confirm a violation of the factorization of the four-quark condensates and the value of the gluon one αsG2 from some other sources. Up to D=20, I do not observe any factorial nor exponential growth of the size of these power corrections.

3. I use these new values of power corrections to extract αs from the BNP lowest moment. To order αs4, I find within the SVZ expansion: αs(Mτ)=0.3081(50)fit(71)αs5 [resp. 0.3260(47)fit(62)αs5] implying αs(MZ)=0.1170(6)(3)evol [resp. 0.1192(6)(3)evol] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: αs(Mτ)|SVZ=0.3180(58)fit(99)syst and αs(MZ)|SVZ=0.1182(14)(3)evol where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we also obtain from the V+A component of τ-decay data: αs(Mτ)|τ,V+A=0.3040(76)fit(68)syst giving: αs(MZ)|τ,V+A=0.1166(8)(3)evol. The average of the two determinations from e+e and τ-decay is: αs(Mτ)=0.3111(71) which implies αs(MZ)=0.1174(10)(3)evol.

4. Some (eventual) contributions beyond the SVZ expansion (1/Q2, instantons and duality violation) are discussed in Sections 10 and 11.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信