{"title":"来自e+e-→强子的QCD参数和SM-高精度更新","authors":"Stephan Narison","doi":"10.1016/j.nuclphysa.2024.122873","DOIUrl":null,"url":null,"abstract":"<div><p><strong>1.</strong> I report an update of my previous comparison of the theoretical value of the muon anomaly <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> with the new measurement. One finds: <span><math><mi>Δ</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>143</mn><mo>±</mo><msub><mrow><mn>42</mn></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>±</mo><msub><mrow><mn>22</mn></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msub><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> indicating about 3<em>σ</em> discrepancy between the SM predictions and experiment.</p><p><strong>2.</strong> I improve the estimate of QCD power corrections up to dimension <span><math><mi>D</mi><mo>=</mo><mn>12</mn></math></span> and provide a new estimate of the ones up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span> within the Shifman-Vainshtein-Zahkarov (SVZ) expansion by combining the ratio of the SVZ Borel/Laplace sum rules (LSR) with the Braaten-Pich and the author (BNP) <em>τ</em>-like decay moments for the <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span> vector current. The results summarized in Table 1 confirm a violation of the factorization of the four-quark condensates and the value of the gluon one <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></math></span> from some other sources. Up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span>, I do not observe any factorial nor exponential growth of the size of these power corrections.</p><p><strong>3.</strong> I use these new values of power corrections to extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the BNP lowest moment. To order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, I find within the SVZ expansion: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3081</mn><msub><mrow><mo>(</mo><mn>50</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>71</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3260</mn><msub><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1170</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1192</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.3180</mn><msub><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>99</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><mo>(</mo><mn>14</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we also obtain from the <span><math><mi>V</mi><mo>+</mo><mi>A</mi></math></span> component of <em>τ</em>-decay data: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3040</mn><msub><mrow><mo>(</mo><mn>76</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>68</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> giving: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1166</mn><mo>(</mo><mn>8</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>. The average of the two determinations from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <em>τ</em>-decay is: <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.3111</mn><mo>(</mo><mn>71</mn><mo>)</mo></math></span> which implies <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.1174</mn><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>.</p><p><strong>4.</strong> Some (eventual) contributions beyond the SVZ expansion (<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, instantons and duality violation) are discussed in Sections <span>10</span> and <span>11</span>.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1046 ","pages":"Article 122873"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QCD parameters and SM-high precision from e+e−→ Hadrons: Updated\",\"authors\":\"Stephan Narison\",\"doi\":\"10.1016/j.nuclphysa.2024.122873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>1.</strong> I report an update of my previous comparison of the theoretical value of the muon anomaly <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> with the new measurement. One finds: <span><math><mi>Δ</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msubsup><mo>=</mo><mo>(</mo><mn>143</mn><mo>±</mo><msub><mrow><mn>42</mn></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>±</mo><msub><mrow><mn>22</mn></mrow><mrow><mi>e</mi><mi>x</mi><mi>p</mi></mrow></msub><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span> indicating about 3<em>σ</em> discrepancy between the SM predictions and experiment.</p><p><strong>2.</strong> I improve the estimate of QCD power corrections up to dimension <span><math><mi>D</mi><mo>=</mo><mn>12</mn></math></span> and provide a new estimate of the ones up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span> within the Shifman-Vainshtein-Zahkarov (SVZ) expansion by combining the ratio of the SVZ Borel/Laplace sum rules (LSR) with the Braaten-Pich and the author (BNP) <em>τ</em>-like decay moments for the <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span> vector current. The results summarized in Table 1 confirm a violation of the factorization of the four-quark condensates and the value of the gluon one <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></math></span> from some other sources. Up to <span><math><mi>D</mi><mo>=</mo><mn>20</mn></math></span>, I do not observe any factorial nor exponential growth of the size of these power corrections.</p><p><strong>3.</strong> I use these new values of power corrections to extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the BNP lowest moment. To order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, I find within the SVZ expansion: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3081</mn><msub><mrow><mo>(</mo><mn>50</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>71</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3260</mn><msub><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1170</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1192</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.3180</mn><msub><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>99</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><mo>(</mo><mn>14</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we also obtain from the <span><math><mi>V</mi><mo>+</mo><mi>A</mi></math></span> component of <em>τ</em>-decay data: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3040</mn><msub><mrow><mo>(</mo><mn>76</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>68</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> giving: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi><mo>+</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1166</mn><mo>(</mo><mn>8</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>. The average of the two determinations from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <em>τ</em>-decay is: <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.3111</mn><mo>(</mo><mn>71</mn><mo>)</mo></math></span> which implies <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.1174</mn><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>.</p><p><strong>4.</strong> Some (eventual) contributions beyond the SVZ expansion (<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, instantons and duality violation) are discussed in Sections <span>10</span> and <span>11</span>.</p></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1046 \",\"pages\":\"Article 122873\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947424000551\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000551","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
QCD parameters and SM-high precision from e+e−→ Hadrons: Updated
1. I report an update of my previous comparison of the theoretical value of the muon anomaly with the new measurement. One finds: indicating about 3σ discrepancy between the SM predictions and experiment.
2. I improve the estimate of QCD power corrections up to dimension and provide a new estimate of the ones up to within the Shifman-Vainshtein-Zahkarov (SVZ) expansion by combining the ratio of the SVZ Borel/Laplace sum rules (LSR) with the Braaten-Pich and the author (BNP) τ-like decay moments for the vector current. The results summarized in Table 1 confirm a violation of the factorization of the four-quark condensates and the value of the gluon one from some other sources. Up to , I do not observe any factorial nor exponential growth of the size of these power corrections.
3. I use these new values of power corrections to extract from the BNP lowest moment. To order , I find within the SVZ expansion: [resp. implying [resp. ] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: and where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we also obtain from the component of τ-decay data: giving: . The average of the two determinations from and τ-decay is: which implies .
4. Some (eventual) contributions beyond the SVZ expansion (, instantons and duality violation) are discussed in Sections 10 and 11.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.