{"title":"枚举标注树和森林的一些多项式矩阵的全正性 II.有根标签树和部分函数图谱","authors":"Xi Chen , Alan D. Sokal","doi":"10.1016/j.aam.2024.102703","DOIUrl":null,"url":null,"abstract":"<div><p>We study three combinatorial models for the lower-triangular matrix with entries <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup></math></span>: two involving rooted trees on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, and one involving partial functional digraphs on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>. We show that this matrix is totally positive and that the sequence of its row-generating polynomials is coefficientwise Hankel-totally positive. We then generalize to polynomials <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span> that count improper and proper edges, and further to polynomials <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></math></span> in infinitely many indeterminates that give a weight <em>y</em> to each improper edge and a weight <span><math><mi>m</mi><mo>!</mo><mspace></mspace><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> for each vertex with <em>m</em> proper children. We show that if the weight sequence <strong><em>ϕ</em></strong> is Toeplitz-totally positive, then the two foregoing total-positivity results continue to hold. Our proofs use production matrices and exponential Riordan arrays.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824000344/pdfft?md5=a2f9aaf88493d3b3f6ef49cef12fa30e&pid=1-s2.0-S0196885824000344-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Total positivity of some polynomial matrices that enumerate labeled trees and forests II. Rooted labeled trees and partial functional digraphs\",\"authors\":\"Xi Chen , Alan D. Sokal\",\"doi\":\"10.1016/j.aam.2024.102703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study three combinatorial models for the lower-triangular matrix with entries <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup></math></span>: two involving rooted trees on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, and one involving partial functional digraphs on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>. We show that this matrix is totally positive and that the sequence of its row-generating polynomials is coefficientwise Hankel-totally positive. We then generalize to polynomials <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span> that count improper and proper edges, and further to polynomials <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></math></span> in infinitely many indeterminates that give a weight <em>y</em> to each improper edge and a weight <span><math><mi>m</mi><mo>!</mo><mspace></mspace><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> for each vertex with <em>m</em> proper children. We show that if the weight sequence <strong><em>ϕ</em></strong> is Toeplitz-totally positive, then the two foregoing total-positivity results continue to hold. Our proofs use production matrices and exponential Riordan arrays.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000344/pdfft?md5=a2f9aaf88493d3b3f6ef49cef12fa30e&pid=1-s2.0-S0196885824000344-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000344\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000344","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Total positivity of some polynomial matrices that enumerate labeled trees and forests II. Rooted labeled trees and partial functional digraphs
We study three combinatorial models for the lower-triangular matrix with entries : two involving rooted trees on the vertex set , and one involving partial functional digraphs on the vertex set . We show that this matrix is totally positive and that the sequence of its row-generating polynomials is coefficientwise Hankel-totally positive. We then generalize to polynomials that count improper and proper edges, and further to polynomials in infinitely many indeterminates that give a weight y to each improper edge and a weight for each vertex with m proper children. We show that if the weight sequence ϕ is Toeplitz-totally positive, then the two foregoing total-positivity results continue to hold. Our proofs use production matrices and exponential Riordan arrays.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.