Byung Choon Lee , Sung Won Kim , Bo Young Lee , Chang Whan Oh , Deung-Lyong Cho , Weon-Seo Kee
{"title":"朝鲜半岛中部中古生代变质和沉积事件及其地质影响","authors":"Byung Choon Lee , Sung Won Kim , Bo Young Lee , Chang Whan Oh , Deung-Lyong Cho , Weon-Seo Kee","doi":"10.1016/j.gsf.2024.101840","DOIUrl":null,"url":null,"abstract":"<div><p>The Middle Paleozoic tectonic evolution of the central Korean Peninsula (Gyeonggi Massif, Hongseong-Imjingang, and Okcheon zone of Okcheon Belts) remains controversial. Particularly, the occurrence of high-grade metamorphism and sedimentation need further examination. In this study, we conducted zircon U-Pb-rare earth element analyses from in the ultramafic-mafic complex in the central Korean Peninsula (Cheonan and Gapyeong areas) and the Paleozoic metasedimentary rocks in the Okcheon Zone of the Okcheon Belt to constrain the timing of maximum depositional and metamorphic ages. We also examined the metamorphic P-T-t path from garnet-bearing amphibolite in the central Korean Peninsula by pseudosection modeling and geothermobarometer. The results show that (i) some of the ultramafic-mafic complex and metasedimentary rocks in the central Korean Peninsula formed during the Middle Paleozoic (ca. 450–374 Ma); (ii) garnet-bearing amphibolite underwent successive metamorphism from amphibolite facies condition (7.5–8.0 kbar and 540–630 °C) at pre-peak stage to granulite facies condition (10.9–11.8 kbar and 740–820 °C) at peak stage, and then retrograded into amphibolite facies condition (5.7–7.7 kbar and 530–670 °C) along the clockwise P–T path during ca. 403–362 Ma. This and previous studies suggest that the central Korean Peninsula underwent subduction-related orogenic events during the Middle Paleozoic era, and it is well correlated to those of the orogenic events in the North Qinling belt.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 5","pages":"Article 101840"},"PeriodicalIF":8.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674987124000641/pdfft?md5=cbaac4f701b77a085e0b91fe34106fef&pid=1-s2.0-S1674987124000641-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Middle Paleozoic metamorphic and sedimentary events in the central Korean Peninsula and their geological implications\",\"authors\":\"Byung Choon Lee , Sung Won Kim , Bo Young Lee , Chang Whan Oh , Deung-Lyong Cho , Weon-Seo Kee\",\"doi\":\"10.1016/j.gsf.2024.101840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Middle Paleozoic tectonic evolution of the central Korean Peninsula (Gyeonggi Massif, Hongseong-Imjingang, and Okcheon zone of Okcheon Belts) remains controversial. Particularly, the occurrence of high-grade metamorphism and sedimentation need further examination. In this study, we conducted zircon U-Pb-rare earth element analyses from in the ultramafic-mafic complex in the central Korean Peninsula (Cheonan and Gapyeong areas) and the Paleozoic metasedimentary rocks in the Okcheon Zone of the Okcheon Belt to constrain the timing of maximum depositional and metamorphic ages. We also examined the metamorphic P-T-t path from garnet-bearing amphibolite in the central Korean Peninsula by pseudosection modeling and geothermobarometer. The results show that (i) some of the ultramafic-mafic complex and metasedimentary rocks in the central Korean Peninsula formed during the Middle Paleozoic (ca. 450–374 Ma); (ii) garnet-bearing amphibolite underwent successive metamorphism from amphibolite facies condition (7.5–8.0 kbar and 540–630 °C) at pre-peak stage to granulite facies condition (10.9–11.8 kbar and 740–820 °C) at peak stage, and then retrograded into amphibolite facies condition (5.7–7.7 kbar and 530–670 °C) along the clockwise P–T path during ca. 403–362 Ma. This and previous studies suggest that the central Korean Peninsula underwent subduction-related orogenic events during the Middle Paleozoic era, and it is well correlated to those of the orogenic events in the North Qinling belt.</p></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"15 5\",\"pages\":\"Article 101840\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674987124000641/pdfft?md5=cbaac4f701b77a085e0b91fe34106fef&pid=1-s2.0-S1674987124000641-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987124000641\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124000641","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Middle Paleozoic metamorphic and sedimentary events in the central Korean Peninsula and their geological implications
The Middle Paleozoic tectonic evolution of the central Korean Peninsula (Gyeonggi Massif, Hongseong-Imjingang, and Okcheon zone of Okcheon Belts) remains controversial. Particularly, the occurrence of high-grade metamorphism and sedimentation need further examination. In this study, we conducted zircon U-Pb-rare earth element analyses from in the ultramafic-mafic complex in the central Korean Peninsula (Cheonan and Gapyeong areas) and the Paleozoic metasedimentary rocks in the Okcheon Zone of the Okcheon Belt to constrain the timing of maximum depositional and metamorphic ages. We also examined the metamorphic P-T-t path from garnet-bearing amphibolite in the central Korean Peninsula by pseudosection modeling and geothermobarometer. The results show that (i) some of the ultramafic-mafic complex and metasedimentary rocks in the central Korean Peninsula formed during the Middle Paleozoic (ca. 450–374 Ma); (ii) garnet-bearing amphibolite underwent successive metamorphism from amphibolite facies condition (7.5–8.0 kbar and 540–630 °C) at pre-peak stage to granulite facies condition (10.9–11.8 kbar and 740–820 °C) at peak stage, and then retrograded into amphibolite facies condition (5.7–7.7 kbar and 530–670 °C) along the clockwise P–T path during ca. 403–362 Ma. This and previous studies suggest that the central Korean Peninsula underwent subduction-related orogenic events during the Middle Paleozoic era, and it is well correlated to those of the orogenic events in the North Qinling belt.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.