用人工神经网络学习尖峰神经元网络:神经振荡

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ruilin Zhang, Zhongyi Wang, Tianyi Wu, Yuhang Cai, Louis Tao, Zhuo-Cheng Xiao, Yao Li
{"title":"用人工神经网络学习尖峰神经元网络:神经振荡","authors":"Ruilin Zhang, Zhongyi Wang, Tianyi Wu, Yuhang Cai, Louis Tao, Zhuo-Cheng Xiao, Yao Li","doi":"10.1007/s00285-024-02081-0","DOIUrl":null,"url":null,"abstract":"<p>First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by a spiking neuronal network model. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning spiking neuronal networks with artificial neural networks: neural oscillations\",\"authors\":\"Ruilin Zhang, Zhongyi Wang, Tianyi Wu, Yuhang Cai, Louis Tao, Zhuo-Cheng Xiao, Yao Li\",\"doi\":\"10.1007/s00285-024-02081-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by a spiking neuronal network model. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02081-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02081-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

基于第一原理的建模非常成功,为复杂的生物功能和现象提供了重要的见解和预测。然而,对于复杂的生命系统来说,这些模型可能难以建立,而且模拟成本高昂。另一方面,现代数据驱动方法在对多种类型的高维和高噪声数据建模方面表现出色。然而,这些数据驱动模型的训练和解释仍然具有挑战性。在这里,我们将这两类方法结合起来,对随机神经元网络振荡进行建模。具体来说,我们开发了一类人工神经网络,为尖峰神经元网络模型产生的高维非线性振荡动力学提供忠实的替代物。此外,当训练数据集在一定的参数选择范围内扩大时,人工神经网络对这些参数具有通用性,可涵盖明显不同的动力学状态。总之,我们的工作为利用人工神经网络建立复杂神经元网络动力学模型开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning spiking neuronal networks with artificial neural networks: neural oscillations

Learning spiking neuronal networks with artificial neural networks: neural oscillations

First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by a spiking neuronal network model. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信