Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy L. Watts, Ming C. Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke
{"title":"添加式制造的 ZrB2-SiC 在 700-1000 °C 的空气和 CO2 中的氧化作用","authors":"Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy L. Watts, Ming C. Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke","doi":"10.1007/s11085-024-10241-2","DOIUrl":null,"url":null,"abstract":"<div><p>Oxidation behavior of additively manufactured ZrB<sub>2</sub>–SiC in air and in CO<sub>2</sub> is reported in the temperature range of 700–1000 °C. Observed scale morphologies in air and in CO<sub>2</sub> were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in CO<sub>2</sub> across all studied temperatures. Activation energies for oxidation of 140 ± 20 kJ/mol in air and 110 ± 20 kJ/mol in CO<sub>2</sub> were determined, indicating similar diffusion processes that appear to be rate-limiting. The formation of protective scales across wide temperature ranges both in air and in CO<sub>2</sub> makes additively manufactured ZrB<sub>2</sub>–SiC an attractive candidate for high-temperature industrial process applications featuring varied oxidants such as heat exchangers.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"827 - 841"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation of Additively Manufactured ZrB2–SiC in Air and in CO2 at 700–1000 °C\",\"authors\":\"Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy L. Watts, Ming C. Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke\",\"doi\":\"10.1007/s11085-024-10241-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oxidation behavior of additively manufactured ZrB<sub>2</sub>–SiC in air and in CO<sub>2</sub> is reported in the temperature range of 700–1000 °C. Observed scale morphologies in air and in CO<sub>2</sub> were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in CO<sub>2</sub> across all studied temperatures. Activation energies for oxidation of 140 ± 20 kJ/mol in air and 110 ± 20 kJ/mol in CO<sub>2</sub> were determined, indicating similar diffusion processes that appear to be rate-limiting. The formation of protective scales across wide temperature ranges both in air and in CO<sub>2</sub> makes additively manufactured ZrB<sub>2</sub>–SiC an attractive candidate for high-temperature industrial process applications featuring varied oxidants such as heat exchangers.</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 4\",\"pages\":\"827 - 841\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10241-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10241-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Oxidation of Additively Manufactured ZrB2–SiC in Air and in CO2 at 700–1000 °C
Oxidation behavior of additively manufactured ZrB2–SiC in air and in CO2 is reported in the temperature range of 700–1000 °C. Observed scale morphologies in air and in CO2 were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in CO2 across all studied temperatures. Activation energies for oxidation of 140 ± 20 kJ/mol in air and 110 ± 20 kJ/mol in CO2 were determined, indicating similar diffusion processes that appear to be rate-limiting. The formation of protective scales across wide temperature ranges both in air and in CO2 makes additively manufactured ZrB2–SiC an attractive candidate for high-temperature industrial process applications featuring varied oxidants such as heat exchangers.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.