Marie Hartwig-Nair, Sara Florisson, Malin Wohlert, E. Kristofer Gamstedt
{"title":"挪威云杉树枝中压缩木和对生木的湿弹性特性分析","authors":"Marie Hartwig-Nair, Sara Florisson, Malin Wohlert, E. Kristofer Gamstedt","doi":"10.1007/s00226-024-01548-z","DOIUrl":null,"url":null,"abstract":"<div><p>The differential swelling seen between softwood opposite wood (OW) and its neighbouring compression wood (CW) developed in branches prompts several engineering issues such as dimensional instability and cracking. For a more efficient use of resources, the inevitable CW and OW should not be discarded or used as fuel, but incorporated into engineered wood products. Swelling is a hygroelastic phenomenon, where both the swelling and elastic properties of CW and OW are needed in order to make proper structural predictions. In this paper, swelling coefficients and moisture dependent elastic moduli for both CW and OW in the three principal material directions are provided along with measurements of moisture content, density, and microfibril angle. The small deformations necessitate the use of precise X-ray micro-computed tomography for measurements. The results indicate that CW and OW from Norway spruce branches differ in swelling, especially in longitudinal direction at low moisture content. It is noted that CW is a wood type with less pronounced anisotropic behaviour than both OW and normal wood from the stem, with the elastic moduli less sensitive to moisture changes in both longitudinal and transverse directions.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"887 - 906"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01548-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterisation of hygroelastic properties of compression and opposite wood found in branches of Norway spruce\",\"authors\":\"Marie Hartwig-Nair, Sara Florisson, Malin Wohlert, E. Kristofer Gamstedt\",\"doi\":\"10.1007/s00226-024-01548-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The differential swelling seen between softwood opposite wood (OW) and its neighbouring compression wood (CW) developed in branches prompts several engineering issues such as dimensional instability and cracking. For a more efficient use of resources, the inevitable CW and OW should not be discarded or used as fuel, but incorporated into engineered wood products. Swelling is a hygroelastic phenomenon, where both the swelling and elastic properties of CW and OW are needed in order to make proper structural predictions. In this paper, swelling coefficients and moisture dependent elastic moduli for both CW and OW in the three principal material directions are provided along with measurements of moisture content, density, and microfibril angle. The small deformations necessitate the use of precise X-ray micro-computed tomography for measurements. The results indicate that CW and OW from Norway spruce branches differ in swelling, especially in longitudinal direction at low moisture content. It is noted that CW is a wood type with less pronounced anisotropic behaviour than both OW and normal wood from the stem, with the elastic moduli less sensitive to moisture changes in both longitudinal and transverse directions.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 3\",\"pages\":\"887 - 906\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-024-01548-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01548-z\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01548-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Characterisation of hygroelastic properties of compression and opposite wood found in branches of Norway spruce
The differential swelling seen between softwood opposite wood (OW) and its neighbouring compression wood (CW) developed in branches prompts several engineering issues such as dimensional instability and cracking. For a more efficient use of resources, the inevitable CW and OW should not be discarded or used as fuel, but incorporated into engineered wood products. Swelling is a hygroelastic phenomenon, where both the swelling and elastic properties of CW and OW are needed in order to make proper structural predictions. In this paper, swelling coefficients and moisture dependent elastic moduli for both CW and OW in the three principal material directions are provided along with measurements of moisture content, density, and microfibril angle. The small deformations necessitate the use of precise X-ray micro-computed tomography for measurements. The results indicate that CW and OW from Norway spruce branches differ in swelling, especially in longitudinal direction at low moisture content. It is noted that CW is a wood type with less pronounced anisotropic behaviour than both OW and normal wood from the stem, with the elastic moduli less sensitive to moisture changes in both longitudinal and transverse directions.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.