双栅配置对带有纳米片多晶硅沟道膜的铁电薄膜晶体管耐用性的影响

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
William Cheng-Yu Ma, Chun-Jung Su, Kuo-Hsing Kao, Ta-Chun Cho, Jing-Qiang Guo, Cheng-Jun Wu, Po-Ying Wu, Jia-Yuan Hung
{"title":"双栅配置对带有纳米片多晶硅沟道膜的铁电薄膜晶体管耐用性的影响","authors":"William Cheng-Yu Ma, Chun-Jung Su, Kuo-Hsing Kao, Ta-Chun Cho, Jing-Qiang Guo, Cheng-Jun Wu, Po-Ying Wu, Jia-Yuan Hung","doi":"10.1149/2162-8777/ad3c21","DOIUrl":null,"url":null,"abstract":"This work explores the characteristics of ferroelectric thin-film transistors (FeTFTs) utilizing an asymmetric dual-gate (DG) structure in both single-gate (SG) and DG operation modes. In the transfer characteristics, DG mode exhibits a memory window (MW) of 1.075 V, smaller than SG mode’s MW of 1.402 V, attributed to the back-gate bias effect causing a reduction in the device’s threshold voltage. However, DG mode demonstrates superior endurance characteristics with 10<sup>6</sup> cycles compared to SG mode’s 10<sup>5</sup> cycles. Additionally, the increase in erase pulse voltage (V<sub>ERS</sub>) exacerbates the polycrystalline-silicon channel lattice damage of FeTFT, resulting in subthreshold swing (SS) degradation. Nevertheless, the extent of SS degradation from DG mode operation is significantly lower than that of SG mode, contributing to the superior endurance of DG mode. The elevation of program pulse voltage (V<sub>PRG</sub>) induces imprint and charge-trapping effects in the top-gate ferroelectric dielectric, leading to reduced endurance. Due to the use of SiO<sub>2</sub> as the back-gate dielectric in FeTFT, DG mode exhibits lower impacts of charge-trapping effects from the top-gate ferroelectric dielectric layer, resulting in better endurance compared to SG mode. The asymmetric DG structure provides greater tolerance in the selection of V<sub>PRG</sub> and V<sub>ERS</sub>.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Dual-Gate Configuration on the Endurance of Ferroelectric Thin-Film Transistors With Nanosheet Polycrystalline-Silicon Channel Film\",\"authors\":\"William Cheng-Yu Ma, Chun-Jung Su, Kuo-Hsing Kao, Ta-Chun Cho, Jing-Qiang Guo, Cheng-Jun Wu, Po-Ying Wu, Jia-Yuan Hung\",\"doi\":\"10.1149/2162-8777/ad3c21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores the characteristics of ferroelectric thin-film transistors (FeTFTs) utilizing an asymmetric dual-gate (DG) structure in both single-gate (SG) and DG operation modes. In the transfer characteristics, DG mode exhibits a memory window (MW) of 1.075 V, smaller than SG mode’s MW of 1.402 V, attributed to the back-gate bias effect causing a reduction in the device’s threshold voltage. However, DG mode demonstrates superior endurance characteristics with 10<sup>6</sup> cycles compared to SG mode’s 10<sup>5</sup> cycles. Additionally, the increase in erase pulse voltage (V<sub>ERS</sub>) exacerbates the polycrystalline-silicon channel lattice damage of FeTFT, resulting in subthreshold swing (SS) degradation. Nevertheless, the extent of SS degradation from DG mode operation is significantly lower than that of SG mode, contributing to the superior endurance of DG mode. The elevation of program pulse voltage (V<sub>PRG</sub>) induces imprint and charge-trapping effects in the top-gate ferroelectric dielectric, leading to reduced endurance. Due to the use of SiO<sub>2</sub> as the back-gate dielectric in FeTFT, DG mode exhibits lower impacts of charge-trapping effects from the top-gate ferroelectric dielectric layer, resulting in better endurance compared to SG mode. The asymmetric DG structure provides greater tolerance in the selection of V<sub>PRG</sub> and V<sub>ERS</sub>.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad3c21\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad3c21","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了采用非对称双栅(DG)结构的铁电薄膜晶体管(FeTFT)在单栅(SG)和双栅(DG)工作模式下的特性。在传输特性方面,DG 模式的存储窗口(MW)为 1.075 V,小于 SG 模式的 1.402 V,这归因于后栅偏压效应导致器件阈值电压降低。然而,与 SG 模式的 105 次循环相比,DG 模式的 106 次循环显示出更优越的耐用特性。此外,擦除脉冲电压(VERS)的增加加剧了 FeTFT 的多晶硅沟道晶格损伤,导致阈下摆幅(SS)衰减。不过,DG 模式工作时的阈下摆幅衰减程度明显低于 SG 模式,因此 DG 模式的耐用性更胜一筹。程序脉冲电压(VPRG)的升高会在顶栅铁电介质中产生印记和电荷捕获效应,从而导致耐久性降低。由于在 FeTFT 中使用 SiO2 作为后栅电介质,DG 模式受到顶栅铁电介质层电荷捕获效应的影响较小,因此与 SG 模式相比具有更好的耐久性。非对称 DG 结构为 VPRG 和 VERS 的选择提供了更大的容差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Dual-Gate Configuration on the Endurance of Ferroelectric Thin-Film Transistors With Nanosheet Polycrystalline-Silicon Channel Film
This work explores the characteristics of ferroelectric thin-film transistors (FeTFTs) utilizing an asymmetric dual-gate (DG) structure in both single-gate (SG) and DG operation modes. In the transfer characteristics, DG mode exhibits a memory window (MW) of 1.075 V, smaller than SG mode’s MW of 1.402 V, attributed to the back-gate bias effect causing a reduction in the device’s threshold voltage. However, DG mode demonstrates superior endurance characteristics with 106 cycles compared to SG mode’s 105 cycles. Additionally, the increase in erase pulse voltage (VERS) exacerbates the polycrystalline-silicon channel lattice damage of FeTFT, resulting in subthreshold swing (SS) degradation. Nevertheless, the extent of SS degradation from DG mode operation is significantly lower than that of SG mode, contributing to the superior endurance of DG mode. The elevation of program pulse voltage (VPRG) induces imprint and charge-trapping effects in the top-gate ferroelectric dielectric, leading to reduced endurance. Due to the use of SiO2 as the back-gate dielectric in FeTFT, DG mode exhibits lower impacts of charge-trapping effects from the top-gate ferroelectric dielectric layer, resulting in better endurance compared to SG mode. The asymmetric DG structure provides greater tolerance in the selection of VPRG and VERS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信