{"title":"日本北部积雪覆盖的温带土壤中二氧化碳、甲烷和氧化亚氮通量的相互关系","authors":"","doi":"10.1016/j.polar.2024.101073","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on assessing the concentrations, fluxes, and production rates of greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub><span>O) in a cold temperate grassland soil<span><span> underlying snowpack during the winter of 1996/7 in northern Japan. Results included mean ± standard deviation (range) </span>correlation coefficients (R</span></span><sup>2</sup>) for CO<sub>2</sub>–CH<sub>4</sub> concentrations and CO<sub>2</sub>–N<sub>2</sub>O concentrations of 0.93 ± 0.07 (0.81–0.99) and 0.96 ± 0.06 (0.83–0.99) for winter, and 0.74 ± 0.17 (0.55–0.92) and 0.96 ± 0.05 (0.88–0.99) for summer, respectively. This suggests close relationships between the mechanisms of CO<sub>2</sub> and N<sub>2</sub><span>O production and the oxidation of CH</span><sub>4</sub>, which are influenced by factors such as oxygen availability, temperature, and moisture in the soil. Furthermore, the study found that winter fluxes of CO<sub>2</sub>–CH<sub>4</sub> and CO<sub>2</sub>–N<sub>2</sub><span>O through the snowpack showed positive linear correlations. Winter CO</span><sub>2</sub> emissions accounted for 96 % of the variability in CH<sub>4</sub> oxidation and 77 % of the variability in N<sub>2</sub>O emissions. This demonstrates that winter CO<sub>2</sub> emissions were affected to the magnitude of CH<sub>4</sub> oxidations and N<sub>2</sub><span>O emissions in the soil. These findings have implications for the modification of terrestrial ecosystem<span> models in temperate regions, particularly in assessing contributions from winter greenhouse gas fluxes to overall annual emissions. Understanding the interrelationships and dynamics of greenhouse gases throughout the year is crucial for accurate modeling and predictions of ecosystem responses to climate change.</span></span></p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"41 ","pages":"Article 101073"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interrelationships of CO2, CH4, and N2O fluxes in snow-covered temperate soils, Northern Japan\",\"authors\":\"\",\"doi\":\"10.1016/j.polar.2024.101073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on assessing the concentrations, fluxes, and production rates of greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub><span>O) in a cold temperate grassland soil<span><span> underlying snowpack during the winter of 1996/7 in northern Japan. Results included mean ± standard deviation (range) </span>correlation coefficients (R</span></span><sup>2</sup>) for CO<sub>2</sub>–CH<sub>4</sub> concentrations and CO<sub>2</sub>–N<sub>2</sub>O concentrations of 0.93 ± 0.07 (0.81–0.99) and 0.96 ± 0.06 (0.83–0.99) for winter, and 0.74 ± 0.17 (0.55–0.92) and 0.96 ± 0.05 (0.88–0.99) for summer, respectively. This suggests close relationships between the mechanisms of CO<sub>2</sub> and N<sub>2</sub><span>O production and the oxidation of CH</span><sub>4</sub>, which are influenced by factors such as oxygen availability, temperature, and moisture in the soil. Furthermore, the study found that winter fluxes of CO<sub>2</sub>–CH<sub>4</sub> and CO<sub>2</sub>–N<sub>2</sub><span>O through the snowpack showed positive linear correlations. Winter CO</span><sub>2</sub> emissions accounted for 96 % of the variability in CH<sub>4</sub> oxidation and 77 % of the variability in N<sub>2</sub>O emissions. This demonstrates that winter CO<sub>2</sub> emissions were affected to the magnitude of CH<sub>4</sub> oxidations and N<sub>2</sub><span>O emissions in the soil. These findings have implications for the modification of terrestrial ecosystem<span> models in temperate regions, particularly in assessing contributions from winter greenhouse gas fluxes to overall annual emissions. Understanding the interrelationships and dynamics of greenhouse gases throughout the year is crucial for accurate modeling and predictions of ecosystem responses to climate change.</span></span></p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":\"41 \",\"pages\":\"Article 101073\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965224000422\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000422","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Interrelationships of CO2, CH4, and N2O fluxes in snow-covered temperate soils, Northern Japan
This study focuses on assessing the concentrations, fluxes, and production rates of greenhouse gases (CO2, CH4, and N2O) in a cold temperate grassland soil underlying snowpack during the winter of 1996/7 in northern Japan. Results included mean ± standard deviation (range) correlation coefficients (R2) for CO2–CH4 concentrations and CO2–N2O concentrations of 0.93 ± 0.07 (0.81–0.99) and 0.96 ± 0.06 (0.83–0.99) for winter, and 0.74 ± 0.17 (0.55–0.92) and 0.96 ± 0.05 (0.88–0.99) for summer, respectively. This suggests close relationships between the mechanisms of CO2 and N2O production and the oxidation of CH4, which are influenced by factors such as oxygen availability, temperature, and moisture in the soil. Furthermore, the study found that winter fluxes of CO2–CH4 and CO2–N2O through the snowpack showed positive linear correlations. Winter CO2 emissions accounted for 96 % of the variability in CH4 oxidation and 77 % of the variability in N2O emissions. This demonstrates that winter CO2 emissions were affected to the magnitude of CH4 oxidations and N2O emissions in the soil. These findings have implications for the modification of terrestrial ecosystem models in temperate regions, particularly in assessing contributions from winter greenhouse gas fluxes to overall annual emissions. Understanding the interrelationships and dynamics of greenhouse gases throughout the year is crucial for accurate modeling and predictions of ecosystem responses to climate change.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.