应用 PFP 理论测量正十三烷或正十四烷与癸醛的过量摩尔体积和过量焓并建立模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahmed Amin Touazi, Abdelnour Boussaadia, Saeda Didaoui, Noureddine Nasrallah, Fetah Chelghoum, Mokhtar Benziane
{"title":"应用 PFP 理论测量正十三烷或正十四烷与癸醛的过量摩尔体积和过量焓并建立模型","authors":"Ahmed Amin Touazi,&nbsp;Abdelnour Boussaadia,&nbsp;Saeda Didaoui,&nbsp;Noureddine Nasrallah,&nbsp;Fetah Chelghoum,&nbsp;Mokhtar Benziane","doi":"10.1007/s10953-024-01374-8","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental measurement of density and enthalpy of mixture for two binary liquid mixtures of <i>n</i>-tridecane or <i>n</i>-tetradecane with decalin was reported in this paper. The measurements were conducted at a temperature range of 293.15–323.15 K and at 303.15 K using calorimeter C80. The mixtures were analyzed at various proportions, including the entire composition range and dilute solutions. The excess molar volume (<i>V</i><sup>E</sup>) and excess molar enthalpy (<i>H</i><sup>E</sup>) of mixtures were calculated and fitted using the Redlich–Kister equation. The paper observed the expansion phenomenon for the <i>V</i><sup>E</sup> at all temperatures, including over the entire composition range and dilute solutions. Additionally, the <i>H</i><sup>E</sup> exhibited endothermic behavior at the studied temperature range and composition range. The Prigogine–Flory–Patterson (PFP) theory was utilized to predict both thermodynamic properties, namely the <i>V</i><sup>E</sup> and <i>H</i><sup>E</sup>. The results obtained using the PFP theory were compared with those obtained using the Treszczanowicz and Benson association (TB) model for <i>V</i><sup>E</sup> and with the NRTL, Wilson, and Flory models for <i>H</i><sup>E</sup>. The PFP model, which employed a single-fitted parameter to describe <i>V</i><sup>E</sup>, demonstrated satisfactory performance in predicting <i>V</i><sup>E</sup>. Conversely, the Treszczanowicz and Benson association (TB) model yielded relatively poor results in fitting <i>V</i><sup>E</sup>. However, the NRTL, Wilson, PFP, and Flory models exhibited good performance in predicting <i>H</i><sup>E</sup>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory\",\"authors\":\"Ahmed Amin Touazi,&nbsp;Abdelnour Boussaadia,&nbsp;Saeda Didaoui,&nbsp;Noureddine Nasrallah,&nbsp;Fetah Chelghoum,&nbsp;Mokhtar Benziane\",\"doi\":\"10.1007/s10953-024-01374-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The experimental measurement of density and enthalpy of mixture for two binary liquid mixtures of <i>n</i>-tridecane or <i>n</i>-tetradecane with decalin was reported in this paper. The measurements were conducted at a temperature range of 293.15–323.15 K and at 303.15 K using calorimeter C80. The mixtures were analyzed at various proportions, including the entire composition range and dilute solutions. The excess molar volume (<i>V</i><sup>E</sup>) and excess molar enthalpy (<i>H</i><sup>E</sup>) of mixtures were calculated and fitted using the Redlich–Kister equation. The paper observed the expansion phenomenon for the <i>V</i><sup>E</sup> at all temperatures, including over the entire composition range and dilute solutions. Additionally, the <i>H</i><sup>E</sup> exhibited endothermic behavior at the studied temperature range and composition range. The Prigogine–Flory–Patterson (PFP) theory was utilized to predict both thermodynamic properties, namely the <i>V</i><sup>E</sup> and <i>H</i><sup>E</sup>. The results obtained using the PFP theory were compared with those obtained using the Treszczanowicz and Benson association (TB) model for <i>V</i><sup>E</sup> and with the NRTL, Wilson, and Flory models for <i>H</i><sup>E</sup>. The PFP model, which employed a single-fitted parameter to describe <i>V</i><sup>E</sup>, demonstrated satisfactory performance in predicting <i>V</i><sup>E</sup>. Conversely, the Treszczanowicz and Benson association (TB) model yielded relatively poor results in fitting <i>V</i><sup>E</sup>. However, the NRTL, Wilson, PFP, and Flory models exhibited good performance in predicting <i>H</i><sup>E</sup>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01374-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01374-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报告了正十三烷或正十四烷与癸醛的两种二元液体混合物的密度和混合物焓的实验测量结果。测量是在 293.15-323.15 K 和 303.15 K 的温度范围内使用 C80 热量计进行的。对不同比例的混合物进行了分析,包括整个成分范围和稀释溶液。混合物的过量摩尔体积(VE)和过量摩尔焓(HE)是用 Redlich-Kister 方程计算和拟合的。论文观察到在所有温度下,包括在整个成分范围和稀释溶液中,VE 都有膨胀现象。此外,在所研究的温度范围和成分范围内,HE 表现出内热行为。研究采用了 Prigogine-Flory-Patterson (PFP)理论来预测这两种热力学性质,即 VE 和 HE。使用 PFP 理论得出的结果与使用 Treszczanowicz 和 Benson association (TB) 模型得出的 VE 结果以及使用 NRTL、Wilson 和 Flory 模型得出的 HE 结果进行了比较。PFP 模型采用单一拟合参数来描述 VE,在预测 VE 方面表现令人满意。相反,Treszczanowicz 和 Benson 关联(TB)模型在拟合 VE 方面的结果相对较差。不过,NRTL、Wilson、PFP 和 Flory 模型在预测 HE 方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory

Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory

Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory

The experimental measurement of density and enthalpy of mixture for two binary liquid mixtures of n-tridecane or n-tetradecane with decalin was reported in this paper. The measurements were conducted at a temperature range of 293.15–323.15 K and at 303.15 K using calorimeter C80. The mixtures were analyzed at various proportions, including the entire composition range and dilute solutions. The excess molar volume (VE) and excess molar enthalpy (HE) of mixtures were calculated and fitted using the Redlich–Kister equation. The paper observed the expansion phenomenon for the VE at all temperatures, including over the entire composition range and dilute solutions. Additionally, the HE exhibited endothermic behavior at the studied temperature range and composition range. The Prigogine–Flory–Patterson (PFP) theory was utilized to predict both thermodynamic properties, namely the VE and HE. The results obtained using the PFP theory were compared with those obtained using the Treszczanowicz and Benson association (TB) model for VE and with the NRTL, Wilson, and Flory models for HE. The PFP model, which employed a single-fitted parameter to describe VE, demonstrated satisfactory performance in predicting VE. Conversely, the Treszczanowicz and Benson association (TB) model yielded relatively poor results in fitting VE. However, the NRTL, Wilson, PFP, and Flory models exhibited good performance in predicting HE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信