{"title":"台风 \"兰\"(2023 年)相关强降水的湍流传输方案比较","authors":"Mikio Nakanishi","doi":"10.2151/sola.2024-022","DOIUrl":null,"url":null,"abstract":"</p><p>On 15 August 2023, Typhoon Lan (2023) struck the Kinki region in western Japan, bringing record precipitation to the Kinki and Chugoku regions. This study investigates a turbulent transport scheme that can predict precipitation more accurately using the Weather Research and Forecasting model. The turbulent transport schemes compared are the Yonsei University scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, and the eddy-diffusivity mass-flux (EDMF) scheme, which is a blend of the MYNN scheme and a mass-flux scheme. Simulations are performed for a domain with a horizontal resolution of 5 km. The results show that the simulated track and central pressure of the typhoon over the Sea of Japan vary depending on the turbulent transport schemes, the MYNN scheme reasonably reproduces the distribution of heavy precipitation areas, the EDMF scheme even improves the quantitative prediction of precipitation, and the formulation of the turbulent length scale is also a key factor for the better prediction using the EDMF scheme. The EDMF scheme is expected to become a leading turbulent transport scheme in operational forecast models.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"64 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of turbulent transport schemes for heavy precipitation associated with Typhoon Lan (2023)\",\"authors\":\"Mikio Nakanishi\",\"doi\":\"10.2151/sola.2024-022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>On 15 August 2023, Typhoon Lan (2023) struck the Kinki region in western Japan, bringing record precipitation to the Kinki and Chugoku regions. This study investigates a turbulent transport scheme that can predict precipitation more accurately using the Weather Research and Forecasting model. The turbulent transport schemes compared are the Yonsei University scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, and the eddy-diffusivity mass-flux (EDMF) scheme, which is a blend of the MYNN scheme and a mass-flux scheme. Simulations are performed for a domain with a horizontal resolution of 5 km. The results show that the simulated track and central pressure of the typhoon over the Sea of Japan vary depending on the turbulent transport schemes, the MYNN scheme reasonably reproduces the distribution of heavy precipitation areas, the EDMF scheme even improves the quantitative prediction of precipitation, and the formulation of the turbulent length scale is also a key factor for the better prediction using the EDMF scheme. The EDMF scheme is expected to become a leading turbulent transport scheme in operational forecast models.</p>\\n<p></p>\",\"PeriodicalId\":49501,\"journal\":{\"name\":\"Sola\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sola\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/sola.2024-022\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-022","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Comparison of turbulent transport schemes for heavy precipitation associated with Typhoon Lan (2023)
On 15 August 2023, Typhoon Lan (2023) struck the Kinki region in western Japan, bringing record precipitation to the Kinki and Chugoku regions. This study investigates a turbulent transport scheme that can predict precipitation more accurately using the Weather Research and Forecasting model. The turbulent transport schemes compared are the Yonsei University scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, and the eddy-diffusivity mass-flux (EDMF) scheme, which is a blend of the MYNN scheme and a mass-flux scheme. Simulations are performed for a domain with a horizontal resolution of 5 km. The results show that the simulated track and central pressure of the typhoon over the Sea of Japan vary depending on the turbulent transport schemes, the MYNN scheme reasonably reproduces the distribution of heavy precipitation areas, the EDMF scheme even improves the quantitative prediction of precipitation, and the formulation of the turbulent length scale is also a key factor for the better prediction using the EDMF scheme. The EDMF scheme is expected to become a leading turbulent transport scheme in operational forecast models.
期刊介绍:
SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles.
Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.