同伴互动的哪些主题与学生在物理课程中的表现相关?

IF 0.6 4区 教育学 Q4 EDUCATION, SCIENTIFIC DISCIPLINES
L N Simpfendoerfer, Meagan Sundstrom, Matthew Dew, N G Holmes
{"title":"同伴互动的哪些主题与学生在物理课程中的表现相关?","authors":"L N Simpfendoerfer, Meagan Sundstrom, Matthew Dew, N G Holmes","doi":"10.1088/1361-6404/ad358b","DOIUrl":null,"url":null,"abstract":"Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on social network analysis methods, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g. grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance.","PeriodicalId":50480,"journal":{"name":"European Journal of Physics","volume":"49 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What topics of peer interactions correlate with student performance in physics courses?\",\"authors\":\"L N Simpfendoerfer, Meagan Sundstrom, Matthew Dew, N G Holmes\",\"doi\":\"10.1088/1361-6404/ad358b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on social network analysis methods, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g. grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance.\",\"PeriodicalId\":50480,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad358b\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad358b","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,就物理课程材料与更多的同伴进行互动与学生的成绩提高有关。然而,一些研究表明,不同主题的同伴互动可能会以不同的方式与学生的成绩相关联,甚至可能完全不相关联。在本研究中,我们探究了在六门不同的物理入门课程(四门讲座课程和两门实验课程)中,学生与哪些同伴就物理课程进行了互动,以及他们就课程材料的哪些特定方面进行了互动。利用社交网络分析方法,我们重复了之前的研究,结果表明,平均而言,在物理课程中与更多同伴互动的学生最终课程成绩更高。在这一结果的基础上,我们发现学生与同伴讨论了课程材料的各个方面:概念、小组作业、评估、讲座和家庭作业。我们观察到,在讲授课程中,与同学就概念进行互动与最终课程成绩的相关性最大,小组作业和家庭作业的相关性也较小。另一方面,在实验课程中,小组作业是唯一与最终课程成绩显著相关的互动主题。我们利用这些发现来讨论课程结构(如评分方案和每周课程安排)如何影响学生的互动,并通过确定特定类型的学生互动与成绩的关联(或不关联),为之前的研究增添了新的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What topics of peer interactions correlate with student performance in physics courses?
Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on social network analysis methods, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g. grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Physics
European Journal of Physics 物理-物理:综合
CiteScore
1.70
自引率
28.60%
发文量
128
审稿时长
3-8 weeks
期刊介绍: European Journal of Physics is a journal of the European Physical Society and its primary mission is to assist in maintaining and improving the standard of taught physics in universities and other institutes of higher education. Authors submitting articles must indicate the usefulness of their material to physics education and make clear the level of readership (undergraduate or graduate) for which the article is intended. Submissions that omit this information or which, in the publisher''s opinion, do not contribute to the above mission will not be considered for publication. To this end, we welcome articles that provide original insights and aim to enhance learning in one or more areas of physics. They should normally include at least one of the following: Explanations of how contemporary research can inform the understanding of physics at university level: for example, a survey of a research field at a level accessible to students, explaining how it illustrates some general principles. Original insights into the derivation of results. These should be of some general interest, consisting of more than corrections to textbooks. Descriptions of novel laboratory exercises illustrating new techniques of general interest. Those based on relatively inexpensive equipment are especially welcome. Articles of a scholarly or reflective nature that are aimed to be of interest to, and at a level appropriate for, physics students or recent graduates. Descriptions of successful and original student projects, experimental, theoretical or computational. Discussions of the history, philosophy and epistemology of physics, at a level accessible to physics students and teachers. Reports of new developments in physics curricula and the techniques for teaching physics. Physics Education Research reports: articles that provide original experimental and/or theoretical research contributions that directly relate to the teaching and learning of university-level physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信