Junmin Li, Ren He, Wenguang Guo, Yibo Wang, Hongxuan Sun
{"title":"基于综合灵敏度分层的双转子轮毂电机多目标优化与性能分析","authors":"Junmin Li, Ren He, Wenguang Guo, Yibo Wang, Hongxuan Sun","doi":"10.1007/s12239-024-00084-w","DOIUrl":null,"url":null,"abstract":"<p>To solve the shortcomings of the existing hub motors in the practical application of electric vehicles, an integrated dual-rotor hub motor (DRHM) was proposed, which can realize multiple drive modes to adapt to the vehicle's variable driving conditions. Aiming at the complex structure of the DRHM, a multi-objective optimization method of design variables stratification based on comprehensive sensitivity was proposed. The design variables with medium and high sensitivity were optimized by the response surface method and genetic algorithm, respectively. After overall weighing the optimization objectives of output torque, torque ripple, usage amount of permanent magnets and magnetic coupling coefficient, three candidate design were screened out. By the comprehensive performance evaluation of the motor, the optimal structural sizes were determined. Based on a two-dimensional model, the electromagnetic performances of the DRHM were analyzed. The simulation results show that the motor has a small cogging torque and low magnetic coupling degree, and the independent control and stable operation of the internal and external motors can be realized. Besides, the basic characteristics of the DRHM prototype were tested. The experimental results accords well with the simulation results, which show that the proposed motor structure is reasonable and the multi-objective optimization method is effective.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Optimization and Performance Analysis of Dual-Rotor Hub Motor Based on Comprehensive Sensitivity Stratification\",\"authors\":\"Junmin Li, Ren He, Wenguang Guo, Yibo Wang, Hongxuan Sun\",\"doi\":\"10.1007/s12239-024-00084-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To solve the shortcomings of the existing hub motors in the practical application of electric vehicles, an integrated dual-rotor hub motor (DRHM) was proposed, which can realize multiple drive modes to adapt to the vehicle's variable driving conditions. Aiming at the complex structure of the DRHM, a multi-objective optimization method of design variables stratification based on comprehensive sensitivity was proposed. The design variables with medium and high sensitivity were optimized by the response surface method and genetic algorithm, respectively. After overall weighing the optimization objectives of output torque, torque ripple, usage amount of permanent magnets and magnetic coupling coefficient, three candidate design were screened out. By the comprehensive performance evaluation of the motor, the optimal structural sizes were determined. Based on a two-dimensional model, the electromagnetic performances of the DRHM were analyzed. The simulation results show that the motor has a small cogging torque and low magnetic coupling degree, and the independent control and stable operation of the internal and external motors can be realized. Besides, the basic characteristics of the DRHM prototype were tested. The experimental results accords well with the simulation results, which show that the proposed motor structure is reasonable and the multi-objective optimization method is effective.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00084-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00084-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-objective Optimization and Performance Analysis of Dual-Rotor Hub Motor Based on Comprehensive Sensitivity Stratification
To solve the shortcomings of the existing hub motors in the practical application of electric vehicles, an integrated dual-rotor hub motor (DRHM) was proposed, which can realize multiple drive modes to adapt to the vehicle's variable driving conditions. Aiming at the complex structure of the DRHM, a multi-objective optimization method of design variables stratification based on comprehensive sensitivity was proposed. The design variables with medium and high sensitivity were optimized by the response surface method and genetic algorithm, respectively. After overall weighing the optimization objectives of output torque, torque ripple, usage amount of permanent magnets and magnetic coupling coefficient, three candidate design were screened out. By the comprehensive performance evaluation of the motor, the optimal structural sizes were determined. Based on a two-dimensional model, the electromagnetic performances of the DRHM were analyzed. The simulation results show that the motor has a small cogging torque and low magnetic coupling degree, and the independent control and stable operation of the internal and external motors can be realized. Besides, the basic characteristics of the DRHM prototype were tested. The experimental results accords well with the simulation results, which show that the proposed motor structure is reasonable and the multi-objective optimization method is effective.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.