具有有限小有限投影维度的相干环的弱(戈伦斯坦)全局维度

IF 1.3 4区 数学 Q1 MATHEMATICS
Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Younes El Haddaoui, Najib Mahdou
{"title":"具有有限小有限投影维度的相干环的弱(戈伦斯坦)全局维度","authors":"Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Younes El Haddaoui, Najib Mahdou","doi":"10.1155/2024/4896819","DOIUrl":null,"url":null,"abstract":"The small finitistic dimension of a ring is determined as the supremum projective dimensions among modules with finite projective resolutions. This paper seeks to establish that, for a coherent ring <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.28119 8.8423\" width=\"8.28119pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> with a finite weak (resp. Gorenstein) global dimension, the small finitistic dimension of <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.28119 8.8423\" width=\"8.28119pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g></svg> is equal to its weak (resp. Gorenstein) global dimension. Consequently, we conclude some new characterizations for (Gorenstein) von Neumann and semihereditary rings.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weak (Gorenstein) Global Dimension of Coherent Rings with Finite Small Finitistic Projective Dimension\",\"authors\":\"Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Younes El Haddaoui, Najib Mahdou\",\"doi\":\"10.1155/2024/4896819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The small finitistic dimension of a ring is determined as the supremum projective dimensions among modules with finite projective resolutions. This paper seeks to establish that, for a coherent ring <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.28119 8.8423\\\" width=\\\"8.28119pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> with a finite weak (resp. Gorenstein) global dimension, the small finitistic dimension of <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.28119 8.8423\\\" width=\\\"8.28119pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g></svg> is equal to its weak (resp. Gorenstein) global dimension. Consequently, we conclude some new characterizations for (Gorenstein) von Neumann and semihereditary rings.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4896819\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/4896819","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

环的有限小维度被确定为具有有限投影分辨率的模块之间的上投影维度。本文试图证明,对于具有有限弱全维(或戈伦斯坦全维)的相干环,其有限小维等于其弱全维(或戈伦斯坦全维)。因此,我们得出了(戈伦斯坦)冯-诺伊曼环和半遗传环的一些新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Weak (Gorenstein) Global Dimension of Coherent Rings with Finite Small Finitistic Projective Dimension
The small finitistic dimension of a ring is determined as the supremum projective dimensions among modules with finite projective resolutions. This paper seeks to establish that, for a coherent ring with a finite weak (resp. Gorenstein) global dimension, the small finitistic dimension of is equal to its weak (resp. Gorenstein) global dimension. Consequently, we conclude some new characterizations for (Gorenstein) von Neumann and semihereditary rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信