Hyoung Suk Suh, Jun Young Song, Yejin Kim, Xiong Yu, Jinhyun Choo
{"title":"数据驱动发现可解释的可变形多孔介质保水模型","authors":"Hyoung Suk Suh, Jun Young Song, Yejin Kim, Xiong Yu, Jinhyun Choo","doi":"10.1007/s11440-024-02322-y","DOIUrl":null,"url":null,"abstract":"<div><p>The water retention behavior—a critical factor of unsaturated flow in porous media—can be strongly affected by deformation in the solid matrix. However, it remains challenging to model the water retention behavior with explicit consideration of its dependence on deformation. Here, we propose a data-driven approach that can automatically discover an interpretable model describing the water retention behavior of a deformable porous material, which can be as accurate as non-interpretable models obtained by other data-driven approaches. Specifically, we present a divide-and-conquer approach for discovering a mathematical expression that best fits a neural network trained with the data collected from a series of image-based drainage simulations at the pore-scale. We validate the predictive capability of the symbolically regressed counterpart of the trained neural network against unseen pore-scale simulations. Further, through incorporating the discovered symbolic function into a continuum-scale simulation, we showcase the inherent portability of the proposed approach: The discovered water retention model can provide results comparable to those from a hierarchical multi-scale model, while bypassing the need for sub-scale simulations at individual material points.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 6","pages":"3821 - 3835"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02322-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-driven discovery of interpretable water retention models for deformable porous media\",\"authors\":\"Hyoung Suk Suh, Jun Young Song, Yejin Kim, Xiong Yu, Jinhyun Choo\",\"doi\":\"10.1007/s11440-024-02322-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The water retention behavior—a critical factor of unsaturated flow in porous media—can be strongly affected by deformation in the solid matrix. However, it remains challenging to model the water retention behavior with explicit consideration of its dependence on deformation. Here, we propose a data-driven approach that can automatically discover an interpretable model describing the water retention behavior of a deformable porous material, which can be as accurate as non-interpretable models obtained by other data-driven approaches. Specifically, we present a divide-and-conquer approach for discovering a mathematical expression that best fits a neural network trained with the data collected from a series of image-based drainage simulations at the pore-scale. We validate the predictive capability of the symbolically regressed counterpart of the trained neural network against unseen pore-scale simulations. Further, through incorporating the discovered symbolic function into a continuum-scale simulation, we showcase the inherent portability of the proposed approach: The discovered water retention model can provide results comparable to those from a hierarchical multi-scale model, while bypassing the need for sub-scale simulations at individual material points.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 6\",\"pages\":\"3821 - 3835\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11440-024-02322-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02322-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02322-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Data-driven discovery of interpretable water retention models for deformable porous media
The water retention behavior—a critical factor of unsaturated flow in porous media—can be strongly affected by deformation in the solid matrix. However, it remains challenging to model the water retention behavior with explicit consideration of its dependence on deformation. Here, we propose a data-driven approach that can automatically discover an interpretable model describing the water retention behavior of a deformable porous material, which can be as accurate as non-interpretable models obtained by other data-driven approaches. Specifically, we present a divide-and-conquer approach for discovering a mathematical expression that best fits a neural network trained with the data collected from a series of image-based drainage simulations at the pore-scale. We validate the predictive capability of the symbolically regressed counterpart of the trained neural network against unseen pore-scale simulations. Further, through incorporating the discovered symbolic function into a continuum-scale simulation, we showcase the inherent portability of the proposed approach: The discovered water retention model can provide results comparable to those from a hierarchical multi-scale model, while bypassing the need for sub-scale simulations at individual material points.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.