研究氧空位对用于能源和 ReRAM 应用的 CeO2(铈)的电子、光学、热电和热力学特性的影响:第一原理量子分析

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED
Shafaat Hussain Mirza, Sikander Azam, Zeesham Abbas, Shoyebmohamad F. Shaikh
{"title":"研究氧空位对用于能源和 ReRAM 应用的 CeO2(铈)的电子、光学、热电和热力学特性的影响:第一原理量子分析","authors":"Shafaat Hussain Mirza, Sikander Azam, Zeesham Abbas, Shoyebmohamad F. Shaikh","doi":"10.1142/s0217979225500389","DOIUrl":null,"url":null,"abstract":"<p>CeO<sub>2</sub> thin film-based devices have become hot favorite candidates for researchers due to the outstanding characteristics of ceria such as memory storage materials, high oxygen storage capacity, excellent chemical and thermal stability, high transparency in visible region and highly tunable energy band structures. Developing suitable materials for industrial uses like optoelectronic and thermoelectric devices is the primary goal of researchers in the field of renewable energy. Herein, we have investigated the optical, thermoelectric and thermodynamic properties of CeO<sub>2</sub> and <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> as promising candidates for energy applications using first-principles calculations. We can observe significant absorption of incident photons by CeO<sub>2</sub> and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> near UV region. The highest peaks of the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are present around 3.7<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV in spin <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>↑</mi></math></span><span></span> channel, however, in spin <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>↓</mi></math></span><span></span> channel, the highest peaks of the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are present around 3.5<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV. The most intense peaks that emerge are due to the transitions of O[<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mn>2</mn><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>] to Ce [<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mn>4</mn><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>]. The investigated values of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">(</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> reveal that CeO<sub>2</sub> and <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> are active optical materials. CeO<sub>2</sub> and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> reflect a negligible number of incident photons (<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mo>∼</mo><mn>2</mn><mn>0</mn></math></span><span></span>%) in the entire energy range. The positive value of the <i>S</i> shows that the CeO<sub>2</sub> under study is <i>p</i>-type semiconductor, while <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> is <i>n</i>-type semiconductor as its <i>S</i> value is negative. The <i>S</i> values for CeO<sub>2</sub> are close to the established standard. As a result, CeO<sub>2</sub> is a viable thermoelectric material for use in devices. The figure of merit (ZT) spectra reveals that CeO<sub>2</sub> (<span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">ZT</mtext></mstyle><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>1</mn></math></span><span></span>) is a more capable candidate for thermoelectric materials compared to <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> (<span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">ZT</mtext></mstyle><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>4</mn></math></span><span></span>). The investigated thermodynamic parameters reveal that CeO<sub>2</sub> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> are dynamically stable compounds.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis\",\"authors\":\"Shafaat Hussain Mirza, Sikander Azam, Zeesham Abbas, Shoyebmohamad F. Shaikh\",\"doi\":\"10.1142/s0217979225500389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CeO<sub>2</sub> thin film-based devices have become hot favorite candidates for researchers due to the outstanding characteristics of ceria such as memory storage materials, high oxygen storage capacity, excellent chemical and thermal stability, high transparency in visible region and highly tunable energy band structures. Developing suitable materials for industrial uses like optoelectronic and thermoelectric devices is the primary goal of researchers in the field of renewable energy. Herein, we have investigated the optical, thermoelectric and thermodynamic properties of CeO<sub>2</sub> and <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> as promising candidates for energy applications using first-principles calculations. We can observe significant absorption of incident photons by CeO<sub>2</sub> and <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> near UV region. The highest peaks of the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ω</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> are present around 3.7<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>eV in spin <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>↑</mi></math></span><span></span> channel, however, in spin <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>↓</mi></math></span><span></span> channel, the highest peaks of the <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ω</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> are present around 3.5<span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>eV. The most intense peaks that emerge are due to the transitions of O[<span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mn>2</mn><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>] to Ce [<span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mn>4</mn><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>]. The investigated values of <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo stretchy=\\\"false\\\">(</mo><mi>ω</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> reveal that CeO<sub>2</sub> and <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> are active optical materials. CeO<sub>2</sub> and <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> reflect a negligible number of incident photons (<span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>∼</mo><mn>2</mn><mn>0</mn></math></span><span></span>%) in the entire energy range. The positive value of the <i>S</i> shows that the CeO<sub>2</sub> under study is <i>p</i>-type semiconductor, while <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> is <i>n</i>-type semiconductor as its <i>S</i> value is negative. The <i>S</i> values for CeO<sub>2</sub> are close to the established standard. As a result, CeO<sub>2</sub> is a viable thermoelectric material for use in devices. The figure of merit (ZT) spectra reveals that CeO<sub>2</sub> (<span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">ZT</mtext></mstyle><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>1</mn></math></span><span></span>) is a more capable candidate for thermoelectric materials compared to <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> (<span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">ZT</mtext></mstyle><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>4</mn></math></span><span></span>). The investigated thermodynamic parameters reveal that CeO<sub>2</sub> and <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">O</mtext></mstyle></mrow></msub></math></span><span></span> are dynamically stable compounds.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500389\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500389","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于铈具有存储记忆材料、高储氧能力、优异的化学和热稳定性、可见光区域的高透明度以及高度可调的能带结构等突出特性,基于 CeO2 薄膜的设备已成为研究人员的热门候选对象。为光电和热电设备等工业用途开发合适的材料是可再生能源领域研究人员的首要目标。在此,我们利用第一性原理计算研究了 CeO2 和 CeO2+VO 的光学、热电和热力学性质,并将其作为能源应用的理想候选材料。我们可以观察到 CeO2 和 CeO2+VO 在紫外区附近对入射光子的显著吸收。在自旋 ↑ 通道中,ε2(ω)的最高峰出现在 3.7eV 附近;而在自旋 ↓ 通道中,ε2(ω)的最高峰出现在 3.5eV 附近。出现的最高峰是由于 O[2p4] 到 Ce [4f1] 的跃迁。n(ω) 的研究值表明 CeO2 和 CeO2+VO 是活性光学材料。在整个能量范围内,CeO2 和 CeO2+VO 反射的入射光子数量微乎其微(∼20%)。S 值为正表示所研究的 CeO2 是 p 型半导体,而 CeO2+VO 是 n 型半导体,因为其 S 值为负。CeO2 的 S 值接近既定标准。因此,CeO2 是一种可用于设备的热电材料。功值(ZT)光谱显示,与 CeO2+VO (ZT=0.14)相比,CeO2(ZT=1.01)更适合用作热电材料。所研究的热力学参数表明,CeO2 和 CeO2+VO 是动态稳定的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis

CeO2 thin film-based devices have become hot favorite candidates for researchers due to the outstanding characteristics of ceria such as memory storage materials, high oxygen storage capacity, excellent chemical and thermal stability, high transparency in visible region and highly tunable energy band structures. Developing suitable materials for industrial uses like optoelectronic and thermoelectric devices is the primary goal of researchers in the field of renewable energy. Herein, we have investigated the optical, thermoelectric and thermodynamic properties of CeO2 and CeO2+VO as promising candidates for energy applications using first-principles calculations. We can observe significant absorption of incident photons by CeO2 and CeO2+VO near UV region. The highest peaks of the ε2(ω) are present around 3.7eV in spin channel, however, in spin channel, the highest peaks of the ε2(ω) are present around 3.5eV. The most intense peaks that emerge are due to the transitions of O[2p4] to Ce [4f1]. The investigated values of n(ω) reveal that CeO2 and CeO2+VO are active optical materials. CeO2 and CeO2+VO reflect a negligible number of incident photons (20%) in the entire energy range. The positive value of the S shows that the CeO2 under study is p-type semiconductor, while CeO2+VO is n-type semiconductor as its S value is negative. The S values for CeO2 are close to the established standard. As a result, CeO2 is a viable thermoelectric material for use in devices. The figure of merit (ZT) spectra reveals that CeO2 (ZT=1.01) is a more capable candidate for thermoelectric materials compared to CeO2+VO (ZT=0.14). The investigated thermodynamic parameters reveal that CeO2 and CeO2+VO are dynamically stable compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信