定制相间结构以提高锂离子电池中硅阳极和镍阴极的性能

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxiang Huang, Yuchen Ji, Guorui Zheng, Hongbin Cao, Haoyu Xue, Xiangming Yao, Lu Wang, Shiming Chen, Zuwei Yin, Feng Pan, Luyi Yang
{"title":"定制相间结构以提高锂离子电池中硅阳极和镍阴极的性能","authors":"Yuxiang Huang, Yuchen Ji, Guorui Zheng, Hongbin Cao, Haoyu Xue, Xiangming Yao, Lu Wang, Shiming Chen, Zuwei Yin, Feng Pan, Luyi Yang","doi":"10.31635/ccschem.024.202404120","DOIUrl":null,"url":null,"abstract":"As promising candidates for high-energy-density lithium-ion batteries, both silicon (Si) anodes and nickel-rich cathodes face significant challenges due to structural instability arising from interphases. In this study, we introduce tetravinylsilane (TVSi) as a multifunctional electrolyte additive to engineer tailored interphases simultaneously on Si anode and LiNi<sub>0.92</sub>Mn<sub>0.05</sub>Co<sub>0.03</sub>O<sub>2</sub> cathode, thereby enhancing their electrochemical performance. On one front, TVSi undergoes polymerization, leading to the formation of a composite solid electrolyte interphase (SEI) with an interpenetrating network structure on the Si surface. This SEI effectively accommodates the volume changes during cycling, inhibiting SEI growth and thereby preserving the capacity. On the other front, the TVSi-induced cathode-electrolyte interphase (CEI) exhibits a dense structure comprising a chemically bonded silicate-silane polymer. This CEI effectively mitigates transition metal dissolution by scavenging hydrofluoric acid and reduces irreversible phase transitions by minimizing side reactions. As a result of the enhanced interfacial stability achieved on both electrodes, TVSi enables improved performance in full cells with a LiNi<sub>0.92</sub>Mn<sub>0.05</sub>Co<sub>0.03</sub>O<sub>2</sub> cathode paired with a silicon anode. This multifunctional additive strategy offers a novel perspective on additive design for high-energy-density lithium-ion batteries, showcasing its potential for advancing battery technology.\n<figure><img alt=\"\" data-lg-src=\"/cms/asset/bd2b489e-0c04-43e0-bc57-ca8688d8e502/keyimage.jpg\" data-src=\"/cms/asset/809c828a-9af8-4417-bd98-a84ceb96f17e/keyimage.jpg\" src=\"/specs/ux3/releasedAssets/images/loader-7e60691fbe777356dc81ff6d223a82a6.gif\"/><ul>\n<li>Download figure</li>\n<li>Download PowerPoint</li>\n</ul>\n</figure>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored Interphases Construction for Enhanced Si Anode and Ni-Rich Cathode Performance in Lithium-Ion Batteries\",\"authors\":\"Yuxiang Huang, Yuchen Ji, Guorui Zheng, Hongbin Cao, Haoyu Xue, Xiangming Yao, Lu Wang, Shiming Chen, Zuwei Yin, Feng Pan, Luyi Yang\",\"doi\":\"10.31635/ccschem.024.202404120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As promising candidates for high-energy-density lithium-ion batteries, both silicon (Si) anodes and nickel-rich cathodes face significant challenges due to structural instability arising from interphases. In this study, we introduce tetravinylsilane (TVSi) as a multifunctional electrolyte additive to engineer tailored interphases simultaneously on Si anode and LiNi<sub>0.92</sub>Mn<sub>0.05</sub>Co<sub>0.03</sub>O<sub>2</sub> cathode, thereby enhancing their electrochemical performance. On one front, TVSi undergoes polymerization, leading to the formation of a composite solid electrolyte interphase (SEI) with an interpenetrating network structure on the Si surface. This SEI effectively accommodates the volume changes during cycling, inhibiting SEI growth and thereby preserving the capacity. On the other front, the TVSi-induced cathode-electrolyte interphase (CEI) exhibits a dense structure comprising a chemically bonded silicate-silane polymer. This CEI effectively mitigates transition metal dissolution by scavenging hydrofluoric acid and reduces irreversible phase transitions by minimizing side reactions. As a result of the enhanced interfacial stability achieved on both electrodes, TVSi enables improved performance in full cells with a LiNi<sub>0.92</sub>Mn<sub>0.05</sub>Co<sub>0.03</sub>O<sub>2</sub> cathode paired with a silicon anode. This multifunctional additive strategy offers a novel perspective on additive design for high-energy-density lithium-ion batteries, showcasing its potential for advancing battery technology.\\n<figure><img alt=\\\"\\\" data-lg-src=\\\"/cms/asset/bd2b489e-0c04-43e0-bc57-ca8688d8e502/keyimage.jpg\\\" data-src=\\\"/cms/asset/809c828a-9af8-4417-bd98-a84ceb96f17e/keyimage.jpg\\\" src=\\\"/specs/ux3/releasedAssets/images/loader-7e60691fbe777356dc81ff6d223a82a6.gif\\\"/><ul>\\n<li>Download figure</li>\\n<li>Download PowerPoint</li>\\n</ul>\\n</figure>\",\"PeriodicalId\":9810,\"journal\":{\"name\":\"CCS Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCS Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31635/ccschem.024.202404120\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404120","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为高能量密度锂离子电池的理想候选材料,硅(Si)阳极和富镍阴极都面临着因相间产生的结构不稳定性而带来的巨大挑战。在本研究中,我们引入了四乙烯基硅烷(TVSi)作为一种多功能电解质添加剂,在硅阳极和 LiNi0.92Mn0.05Co0.03O2 阴极上同时设计定制的相间层,从而提高它们的电化学性能。一方面,TVSi 会发生聚合,从而在硅表面形成具有互穿网络结构的复合固体电解质相(SEI)。这种 SEI 能有效地适应循环过程中的体积变化,抑制 SEI 的增长,从而保持容量。另一方面,TVSi 诱导的阴极-电解质间相(CEI)呈现出由化学键合的硅酸盐-硅烷聚合物组成的致密结构。这种 CEI 可通过清除氢氟酸有效缓解过渡金属溶解,并通过最大限度地减少副反应来降低不可逆相变。由于两个电极的界面稳定性都得到了增强,TVSi 能够提高镍钴锰酸锂(LiNi0.92Mn0.05Co0.03O2)阴极与硅阳极配对的全电池的性能。这种多功能添加剂策略为高能量密度锂离子电池的添加剂设计提供了一个新的视角,展示了其推动电池技术发展的潜力。 下载图表下载 PowerPoint
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailored Interphases Construction for Enhanced Si Anode and Ni-Rich Cathode Performance in Lithium-Ion Batteries
As promising candidates for high-energy-density lithium-ion batteries, both silicon (Si) anodes and nickel-rich cathodes face significant challenges due to structural instability arising from interphases. In this study, we introduce tetravinylsilane (TVSi) as a multifunctional electrolyte additive to engineer tailored interphases simultaneously on Si anode and LiNi0.92Mn0.05Co0.03O2 cathode, thereby enhancing their electrochemical performance. On one front, TVSi undergoes polymerization, leading to the formation of a composite solid electrolyte interphase (SEI) with an interpenetrating network structure on the Si surface. This SEI effectively accommodates the volume changes during cycling, inhibiting SEI growth and thereby preserving the capacity. On the other front, the TVSi-induced cathode-electrolyte interphase (CEI) exhibits a dense structure comprising a chemically bonded silicate-silane polymer. This CEI effectively mitigates transition metal dissolution by scavenging hydrofluoric acid and reduces irreversible phase transitions by minimizing side reactions. As a result of the enhanced interfacial stability achieved on both electrodes, TVSi enables improved performance in full cells with a LiNi0.92Mn0.05Co0.03O2 cathode paired with a silicon anode. This multifunctional additive strategy offers a novel perspective on additive design for high-energy-density lithium-ion batteries, showcasing its potential for advancing battery technology.
  • Download figure
  • Download PowerPoint
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CCS Chemistry
CCS Chemistry Chemistry-General Chemistry
CiteScore
13.60
自引率
13.40%
发文量
475
审稿时长
10 weeks
期刊介绍: CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信